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Content of the talk

Subjective foundation of quantum mechanics

This consists in showing that:

• It is possible to derive all axioms (and rules) of QM from a single principle of
self-consistency (rationality) or, in other words, that QM laws of Nature are
logically consistent.

• QM is just the Bayesian theory generalised to the complex Hilbert space.
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Quantum Bayesianism

• I. Pitowsky (2003). “Betting on the outcomes of measurements: a Bayesian
theory of quantum probability.” Studies in History and Philosophy of Modern
Physics 34.3: 395-414.

• C. A. Fuchs, R. Schack (2013). “Quantum-Bayesian coherence.” Reviews of
Modern Physics 85: 1693

• C. A. Fuchs, N. D. Mermin, R. Schack (2013). “An introduction to QBism with an
application to the locality of quantum mechanics.” American Journal of Physics
82.8 (2014): 749-754.

• N. D. Mermin (2014). “Physics: QBism puts the scientist back into science.”
Nature 507.7493: 421-423.
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Subjective Foundation of Probability

• B. de Finetti (1937). La prevision: ses lois logiques, ses sources subjectives.
Annales de l’Institut Henri Poincar é English translation in (Kyburg Jr. and
Smokler, 1964).

• P. Williams (1975). “Coherence, strict coherence, and zero probabilities.”
Proceedings of the Fifth International Congress on Logic, Methodology, and
Philosophy of Science, vol. VI Reidel Dordrecht, 29-33.

• P. Walley (1991). Statistical Reasoning with Imprecise Probabilities. Chapman
and Hall.
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Argument

Classical probability theory
Theory of desirable gambles over real numbers

∼

Quantum mechanics
Theory of desirable gambles over complex numbers
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(Classical definition) Theory of probability

1 Probability is a number between 0 and 1.

2 Probability of the certain event is 1.

3 Probability of the event “A or B” is P(A ∨ B) = P(A) + P(B) (if the events are
mutually exclusive);

4 the conditional probability of B given the event A is defined by Bayes’ rule

P(B|A) =
P(A ∩ B)

P(A)
with P(A) > 0.

From these axioms, it is also possible to derive marginalization, law of total probability,
independence and so on.
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(Classical) TDGs for Fair Coin

Events are Heads, Tails: Ω = {Heads,Tails}.
A gamble g is an element of R2 g = [g1, g2].
If Alice accepts g then:

• she commits herself to receive/pay g1 if Heads;

• she commits herself to receive/pay g2 if Tails.

We ask Alice to state whether a certain gamble is desirable for her, meaning that she
would commit herself to accept whatever reward or loss it will eventually lead to.
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What’s desirable for Alice?

g1

g2
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What’s desirable for Alice?

g1

g2

(1, 1)
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What’s desirable for Alice?

g1

g2

+

Any gamble g 6= 0 such that g(ω) ≥ 0 for each ω ∈ Ω must be desirable for Alice.
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What’s desirable for Alice?

g1

g2

(−1,−1)

+
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What’s desirable for Alice?

g1

g2

+

−

Any gamble g such that g(ω) ≤ 0 for each ω ∈ Ω must not be desirable for Alice.
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What’s desirable for Alice?

g1

g2

+

−

(−0.1, 1)
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What’s desirable for Alice?

g1

g2

+

−

(−0.11, 1.08)
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What’s desirable for Alice?

g1

g2

+

−

(−0.09, 0.88)

If Alice finds g to be desirable (g ∈ K), then also λg must be desirable for any 0 < λ ∈ R.
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What’s desirable for Alice?

g1

g2

+

−
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What’s desirable for Alice?

g1

g2

+

−

(−0.1, 1)

(0.05, 0)

If Alice finds g1, g2 desirable (g1, g2 ∈ K), then she also must accept g1 + g2.
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What’s desirable for Alice?

g1

g2

+

−

(−0.1, 1)

(0.05, 0)
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What’s desirable for Alice?

g1

g2

+

−
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What’s desirable for Alice?

g1

g2

+

−

(−1, 1)

If g ∈ K then either g 
 0 or g − δ ∈ K for some 0 < δ ∈ Rn.
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Sure Loss (Dutch Book)

g1

g2

+

−

(−0.5, 0.3)
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Sure Loss (Dutch Book)

g1

g2

+

−

(−0.5, 0.3)

(0.45,−0.4)

(−0.05,−0.1)
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Summing up: (Classical) TDGs

Definition 1 (Coherence)
The set K of Alice’s desirable gambles is said to be coherent (rational, consistent)
when it satisfies a few simple rationality criteria:

1 Accepting Positive gambles;

2 Avoiding Negative gambles;

3 Positive scaling (“change of currency”);

4 Additivity (“parallelogram rule”);

5 Openness.
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State of full or partial ignorance

g1

g2

g1

g2
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Geometric properties ?

g1

g2
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Geometric properties ?

g1

g2
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Alice through the looking glass

Probability does not exist.
B. de Finetti

Probability rules can be derived from desirability via Duality.
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Optics of Desirability (Duality)

g1

g2

+

−
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Optics of desirability

g1

g2

g⊥t ⇔ g · t = 0
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Optics of desirability

g1

g2

g⊥t ⇔ g · t = 0
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Optics of desirability

g1

g2

K• = {t ∈ Rn | g · t ≥ 0 ∀g ∈ K}
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Polar cone

g1

g2

(0.5, 0.5)

(0.6, 0.8)

(0.2, 0.3)

K• = {t ∈ Rn | t ≥ 0, g · t ≥ 0 ∀g ∈ K}
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Preserving the scale

g1

g2
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Preserving the scale

g1

g2

(0, 1)

(1, 0)

p1 = (1/2, 1/2)

p2 = (1/3, 2/3)

Imprecise Probability!

K• = {t ∈ Rn | t ≥ 0, 1 · t = 1, g · t ≥ 0 ∀g ∈ K}
= {p ∈ P | g · p ≥ 0 ∀g ∈ K}
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Fair Coin

g1

g2

(0, 1)

(1, 0)

p = (1/2, 1/2)

K• = {p = (1/2, 1/2)}
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From (Classical) TDGs to probability axioms

From a few simple rationality criteria:

1 Accepting Positive gambles;

2 Avoiding Negative gambles;

3 Positive scaling (“change of currency”);

4 Additivity (“parallelogram rule”);

5 Openness.

We can derive the rule of probabilities:

1 Probability is a number between 0 and 1.

2 Probability of the certain event is 1.

3 Probability of the event “A or B” is P(A ∨ B) = P(A) + P(B) (if the events are
mutually exclusive);

4 the conditional probability of B given the event A is defined by Bayes’ rule

P(B|A) =
P(A ∩ B)

P(A)
with P(A) > 0.

38 / 109



Quantum Mechanics
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Stern-Gerlarch experiment
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Feynman’s notation

 +
−
|||
|||


Z

 +
−|||


Z

 +
−
|||


Z

 +
−


Z

We can now compose SG apparatus in series:

 +
−|||


S

N−→

 +
−
|||


T

αN−→

 +
−
|||


R

βαN−→
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Feynman’s notation
Odd example:

 +
−|||


Z

N−→

 +
−|||


X

1
2 N
−→

 +
−
|||


Z

1
4 N
−→

 +
−|||


Z

N−→

 +
−
|||


X

1
2 N
−→

 +
−
|||


Z

1
4 N
−→

 +
−|||


Z

N−→

 +
−


X

N−→

 +
−
|||


Z

0−→
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Playing with Mat

Every propositional system can be embedded into a projective
geometry in some linear vector space with coefficients from a field.

x

z

y

e1

e3

e2
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Playing with Mat [
g1 g2 g3

]
g1

g2

g3



How do I say: “it comes out Heads and Alice gets g1”

e1eT
1

g1

g2

g3

 e1eT
1 = g1 e1eT

1

1 0 0
0 0 0
0 0 0

 g1

g2

g3

 1 0 0
0 0 0
0 0 0

 = g1

1 0 0
0 0 0
0 0 0



gIH
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Playing with Mat

[
g1 g2 g3

]
g1

g2

g3



“it comes out either Heads or Tails and Alice gets either g1 or g2”

e1eT
1

g1

g2

g3

 e1eT
1 + e2eT

2

g1

g2

g3

 e2eT
2 =

g1

g2

0


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Why the canonical basis?

Every propositional system can be embedded into a projective
geometry in some linear vector space with coefficients from a field.

x

z

y

v1

v3

v2
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Playing with Mat

[
g1 g2 g3

]
g1

g2

g3


vi = Rei

How do I say: “it comes out Heads and Alice gets g1”

v1vT
1 (RT )−1

g1

g2

g3

 (R)−1

︸ ︷︷ ︸
v1vT

1 = g1 v1vT
1

v1vT
1 G v1vT

1 = g1 v1vT
1
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Girolamo Cardano Riddle

ι =
√
−1
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Girolamo Cardano Riddle

ι =
√
−1
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Let’s change the field then

Every propositional system can be embedded into a projective
geometry in some linear vector space with coefficients from a field.

x

z

y

v11 + ιv12

v31 + ιv32

v21 + ιv22
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Playing with Mat [
g1 g2 g3

]
g1

g2

g3



How do I say: “it comes out Heads and Alice gets g1”

v1v†1 (R†)−1

g1

g2

g3

 (R)−1

︸ ︷︷ ︸
v1v†1 = g1 v1v†1

v1v†1 G v1v†1 = g1 v1v†1

Π1 G Π1 = g1 Π1
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Gambles for a Quantum coin (Electron Spin)

G is a Hermitian matrix (complex square matrix that is equal to its own conjugate
transpose).

G =

[
1 0
0 1

]
G =

[
1 2
2 −3

]
G =

[
1 1 + ι2

1− ι2 −1

]
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Protocol

• A n-dimensional quantum system is prepared by the bookmaker in some
quantum state. Alice has her personal knowledge about the experiment
(possibly no knowledge at all). +

−|||


S

N−→

 +
−
|||


T

αN−→

 +
−
|||


R

βαN−→

• The bookie announces that he will measure the quantum system along its n
orthogonal directions, that is Ω = {ω1, . . . , ωn}, with ωi denoting the elementary
event “detection along i”. Mathematically, it means that the quantum system is
measured along its eigenvectors,1 i.e., the projectors Π∗ = {Π∗1 , . . . ,Π∗n}.

1We mean the eigenvectors of the density matrix of the quantum system.
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Protocol

• Before the experiment, Alice declares the set of gambles she is willing to accept.
Mathematically, a gamble G on this experiment is a Hermitian matrix, i.e.,
G ∈ Cn×n

h . We will denote the set of gambles Alice is willing to accept by
K ⊆ Cn×n

h .

G =

[
1 0
0 1

]
G =

[
1 2
2 −3

]
G =

[
1 1 + ι2

1− ι2 −1

]

• By accepting a gamble G, Alice commits herself to receive γi ∈ R euros if the
outcome of the experiment eventually happens to be ωi . The value γi is defined
from G and Π∗ as follows:

Π∗i G Π∗i = gi Π∗i

It is a real number since G is Hermitian.
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What’s desirable for Alice? (pictorial)

[
1 0
0 1

]

Π∗i

[
1 0
0 1

]
Π∗i = 1 Π∗i
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What’s desirable for Alice? (pictorial)

G 
 0

G ≤ 0

G

H

Π∗i GΠ∗i = γi Π
∗
i for i = 1, . . . , n.
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Summing up: Quantum TDGs

Definition 2 (Coherence)
The set K of Alice’s desirable Gambles is said to be coherent (rational, consistent)
when it satisfies a few simple rationality criteria:

1 Accepting Positive Gambles;

2 Avoiding Negative Gambles;

3 Positive scaling (“change of currency”);

4 Additivity (“parallelogram rule”);

5 Openness.

I use the word Gambles (capital G) for matrix gambles.
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Geometric Properties

By exploiting Pauli decomposition, any 2D Hermitian matrices can be written as:

G =

[
v + z x − ιy
x + ιy v − z

]
= vI + xσx + yσy + zσz ,

3D projection of the cone of all positive semi-definite matrices.
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Geometric properties ?
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Optics of Quantum Desirability (pictorial)

G⊥R ⇔ G · R = Tr(G†R) = 0
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Optics of Quantum Desirability

[
0.5 0
0 0.5

]

[
0.7 0.2− 0.3ι

0.2 + 0.3ι 1

]

[
0.1 −0.1
−0.1 0.1

]

K• = {R ∈ Cn×n
h | R ≥ 0, G · R ≥ 0 ∀G ∈ K}
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Preserving the scale
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Preserving the scale

ρ1 =

[
0.5 −0.1
−0.1 0.5

]
ρ2 =

[
0.7 0.2− ι0.1

0.2 + ι0.1 0.3

]

K• = {R ∈ Cn×n
h | R ≥ 0, I · R = 1, G · R ≥ 0 ∀G ∈ K}
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Duality of coherence

• The dual of Alice’s coherent set of strictly desirable gambles is the set

M = {ρ ∈ Dn×n
h | ρ ≥ 0, Tr(ρ) = 1, G · ρ ≥ 0 ∀G ∈ K},

that includes all positive operators with trace one (i.e., density matrices), that are
compatible with Alice’s beliefs about the quantum system (expressed in terms of
desirable gambles).

This is exactly the first axiom of QM,

Associated to any isolated physical system is a complex Hilbert space
known as the state space of the system. The system is completely
described by its density operator, which is a positive operator ρ with trace
one, acting on the state space of the system.

expressed in a completely subjective way.

⊕ = QM
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expressed in a completely subjective way.

⊕ = QM
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State of full ignorance about a QuBit experiment

3D projection of the cone of all positive semi-definite matrices.
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Dual: Bloch Sphere

M = Dn×n
h → All density matrices
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Maximal knowledge about a QuBit experiment
Alice’s SDG K this time coincides with

K = {G ∈ Cn×n
h | G 
 0} ∪ {G ∈ Cn×n

h | Tr(G†D) > 0},

D =
1
2

[
1 −ι
ι 1

]
,

where ι denotes the imaginary unit.

By exploiting Pauli decomposition:

G =

[
v + z x − ιy
x + ιy v − z

]
= vI + xσx + yσy + zσz ,

we obtain Tr(G†D) = v + y > 0

v

y
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Maximal knowledge about a QuBit experiment

Alice’s SDG K this time coincides with

K = {G ∈ Cn×n
h | G 
 0} ∪ {G ∈ Cn×n

h | Tr(G†D) > 0},

D =
1
2

[
1 −ι
ι 1

]
,

M = {ρ = D}
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Classical probability is “included” in QM

Π1 = e1e†1, Π2 = e2e†2

Π2

Π1

ρ =

[
0.5 0
0 0.5

]
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Fair Price
What is Alice’s fair price for the gamble G = Π2 = e2e†2?

max c : G − cI ∈ K

Π2

Π1−cI

G − cI

ρ =

[
0.5 0
0 0.5

]
G =

[
0 0
0 1

]
cI =

[
0.1 0
0 0.1

]
G − cI =

[
−0.1 0

0 0.9

]
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Fair Price
What is Alice’s fair price for the gamble G = Π2 = e2e†2?

max c : G − cI ∈ K

Π2

Π1

−cI

G − cI

ρ =

[
0.5 0
0 0.5

]
G =

[
0 0
0 1

]
cI =

[
0.4 0
0 0.4

]
G − cI =

[
−0.4 0

0 0.6

]
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Fair Price

Π2

Π1

−ĉI

G − ĉI ρ =

[
0.5 0
0 0.5

]
G =

[
0 0
0 1

]
ĉI =

[
0.5 0
0 0.5

]
G − ĉI =

[
−0.5 0

0 0.5

]

ĉ is Alice’s fair price for the gamble G
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Fair Price through Duality

Π2

Π1

−ĉI

G − ĉI ρ =

[
0.5 0
0 0.5

]
G =

[
0 0
0 1

]
ĉI =

[
0.5 0
0 0.5

]
G − ĉI =

[
−0.5 0

0 0.5

]

Duality: we can show that
ĉ = Tr(Gρ) = Tr(Π2ρ) = ρ22 so ĉ is Alice’s probability for the event Π2 (Tails)
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ĉI =

[
0.5 0
0 0.5

]
G − ĉI =
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In QM: fair Price of an Event (Projector)

We have learned that

p1 = Tr(Π1ρ), p2 = Tr(Π2ρ), . . . , pn = Tr(Πnρ)

1 =
n∑

i=1

pi =
n∑

i=1

Tr(Πiρ)

We have derived

Born’s rule

as subjective fair price of a gamble.

In case of non-maximal cones we obtain lower and upper probabilities.
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Quantum Coin
Assume that Alice’s SDG is

K = {G ∈ Cn×n
h | G 
 0} ∪ {G ∈ Cn×n

h | Tr(G†D) > 0},

D =
1
2

[
1 −ι
ι 1

]
,

v

y

 +
−
|||
|||


Z

 +
−|||


Z

 +
−
|||


Z

 +
−


Z
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Alice’s belief on the result of a SG experiment

By duality we have seen that

ρ =
1
2

[
1 −ι
ι 1

]
Assume we want to know what are Alice’s probabilities of observing Z+ and Z− +

−
|||
|||


Z

Z+ = e1e†1 and Z− = e2e†2

p1 = Tr(ΠZ+ρ) =
1
2
, p2 = Tr(ΠZ−ρ) =

1
2

So Alice believes that the probability of observing Z+ and Z− is 1
2 .
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Alice’s belief on the result of a SG experiment

By duality we have seen that

ρ =
1
2

[
1 −ι
ι 1

]
Assume we want to know what are the probabilities of Alice’s probabilities of
observing Y+ and Y−  +

−
|||
|||


Y

ΠY+ =

[ 1
2 −ι 1

2
ι 1

2
1
2

]
, ΠY− =

[ 1
2 ι 1

2
−ι 1

2
1
2

]

p1 = Tr(ΠZ+ρ) = 1, p2 = Tr(ΠZ−ρ) = 0

So Alice believes that the probability of observing Y+ is 1.
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Last missing brick

The theory of DG is subjective (epistemic) but Quantum Experiments are real.
Different subjects (Alice, Bob, Charlie...) must be able to reach the same conclusion
conditional on some evidence.

We need a rule for updating a SDG based on new evidence (from quantum
experiments).
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Coherent Updating

Assume that Alice considers an event “indicated” by a certain projector Πi in
Π = {Πi}n

i=1.

Alice can focus on gambles that are contingent on the event Πi :

these are gambles such that “outside” Πi no utile is received or due
– status quo is maintained

Mathematically, these gambles are of the form

G =

{
H if Πi occurs,
0 if Πj occurs, with j 6= i .

or, equivalently,
G = αΠi

for some α ∈ R.
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Coherent Updating

Definition 3
Let K be an SDG, the set obtained as

KΠi =
{

G ∈ Cn×n
h | G 
 0 or ΠiGΠi ∈ K

}
is called the set of desirable gambles conditional on Πi .

We can also compute the dual of KΠi , i.e.,MΠi – we call it a conditional quantum
credal set.

Does this digram commute?

K KΠi

M MΠi

dual
conditioning

conditioning

dual

By duality, we can show that this digram commutes when Tr(ΠiρΠi ) = Tr(Πiρ) > 0.
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Subjective formulation of the second axiom of QM

Given a quantum credal setM, the corresponding quantum credal set conditional on
Πi is obtained as

MΠi =

{
ΠiρΠi

Tr(ΠiρΠi )

∣∣∣ρ ∈M} ,
provided that Tr(ΠiρΠi ) > 0 for every ρ ∈M.

This rule is called in QM

Luders’ Rule

or the collapse of the wave function, because after the measurement the new
density matrix is equal to Πi with certainty.
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What actually is this rule?

Let us consider the case ρ = diag(0.5, 0.5), i.e., she believes that the coin is fair and

Πi =

[
1 0
0 0

]

From the previous rule, we derive that her conditional set of density matrices is

Π1ρΠ1

Tr(ΠiρΠi )
=

[
0.5 0
0 0

]
0.5

=

[
1 0
0 0

]
,

whose diagonal is p = (1, 0).

This is just a complex number version of Bayes’ rule. We are simply applying
Bayes’ rule to the density matrices (in this case probability mass functions) inM.

Under the assumption that “the coin has landed head up”, Alice’s knowledge about the
coin experiment “has collapsed” to p = [1, 0] – she knows that the result of the
experiment is Head.
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This “solves” the cat dilemma

Alice may believe that the cat is alive or dead (in her imagination), when she opens
the box she is simply updating her beliefs.
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Conclusions: QM as desirability

Theory of desirability QM
Rationality Density Matrix (1st axiom)

Conditioning Measurement (2d axiom)
Temporal coherence Time Evolution (3d axiom)

Epistemic Independence Separable States (4th axiom)

Theory of desirability QM
Fair price Born’rule
Bayes’rule Luders rule

Marginalisation Partial tracing
Epistemic independence Tensor product

violation of Frechet Bounds Entanglement
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Quantum Mechanics.” Found. of Physics (2017) 47: 991–1002.

• ... “Quantum rational preferences and desirability.” Proc. of the 1st International Workshop
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