LEARNING FROM IMPRECISE DATA

Eyke Hüllermeier
Intelligent Systems Group
Department of Computer Science
University of Paderborn, Germany
eyke@upb.de

OUTLINE

SUPERSET LEARNING

... is a specific type of weakly supervised learning, studied under different names in machine learning:

- learning from partial labels
- multiple label learning
- learning from ambiguously labeled examples
- ...
... also connected to learning from coarse data in statistics (Rubin, 1976; Heitjan and Rubin, 1991), missing values, data augmentation (Tanner and Wong, 2012),
... as well as data modeling based on generalized sets and measures, such as fuzzy data (Kwakernaak, 1978; Kruse and Meyer, 1987; Puri and Ralescu, 1986; Coppi et al., 2006; Bandemer and Näther, 2011; Viertl, 2011) and belief functions (Denoeux, 1995).

SUPERVISED LEARNING

Given a set of (i.i.d.) training data

$$
\mathcal{D}=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{N}, y_{N}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}
$$

and a hypothesis space $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$, find a model with low risk

$$
\mathcal{R}(h)=\int_{\mathcal{X} \times \mathcal{Y}} L(h(\boldsymbol{x}), y) d \mathbf{P}(\boldsymbol{x}, y)
$$

EXAMPLE: BINARY CLASSIFICATION

$$
\begin{aligned}
& \mathcal{X}=\mathbb{R}^{d}, \\
& \mathcal{Y}=\{-1,+1\}
\end{aligned}
$$

EXAMPLE: BINARY CLASSIFICATION

SUPERSET LEARNING

- Set of imprecise/ambiguous/coarse observations

$$
\mathcal{O}=\left\{\left(\boldsymbol{x}_{1}, Y_{1}\right), \ldots,\left(\boldsymbol{x}_{N}, Y_{N}\right)\right\}
$$

with supersets $Y_{n} \ni y_{n}$.

- An instantiation of \mathcal{O}, denoted \mathcal{D}, is obtained by replacing each Y_{n} with a candidate $y_{n} \in Y_{n}$.

one of infinitely many instantiations

EXAMPLE: BINARY CLASSIFICATION

$O=\{O, O\}$

EXAMPLE: CLASSIFICATION

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}
21.9	0	154.3				
43.2	1	133.2				
53.3	1	163.5				
\ldots						
42.7	0	142.8				

EXAMPLE: CLASSIFICATION

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}
21.9	0	154.3				
43.2	1	133.2				
53.3	1	163.5				
\ldots						
42.7	0	142.8				

EXAMPLE: CLASSIFICATION

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}
21.9	0	154.3				
43.2	1	133.2				
53.3	1	163.5				
\ldots						
42.7	0	142.8				

EXAMPLE: COMPLEX DATA

In label ranking, we learn mappings from instances to rankings:

$$
\boldsymbol{x} \quad \mapsto \quad \mathrm{A} \succ \mathrm{C} \succ \mathrm{D} \succ \mathrm{~B}
$$

$$
\begin{aligned}
& \left.\left.\mathrm{A} \succ \mathrm{C} \longleftrightarrow \begin{array}{c}
\text { incomplete } \\
\text { observation }
\end{array}\right) \longleftrightarrow \begin{array}{l}
\mathrm{A} \succ \mathrm{C} \succ \mathrm{~B} \succ \mathrm{D} \\
\mathrm{~A} \succ \mathrm{C} \succ \mathrm{D} \succ \mathrm{~B} \\
\mathrm{~A} \succ \mathrm{~B} \succ \mathrm{C} \succ \mathrm{D} \\
\vdots \succ \vdots \succ \vdots \succ \vdots \\
\mathrm{D} \succ \mathrm{~B} \succ \mathrm{~A} \succ \mathrm{C}
\end{array}\right\} \\
& \text { set of consistent } \\
& \text { completions }
\end{aligned}
$$

LEARNING FROM SET-VALUED DATA

- We are interested in learning with weak assumptions about the coarsening process, and learning algorithms ought to be robust with respect to these assumptions.
- Similar to epistemic random set setting (Ω, P, Y), but with little knowledge about multi-valued mapping $Y: \Omega \rightarrow 2^{\mathcal{Y}}$.
- Discriminative learning, not generative.

LEARNING FROM SET-VALUED DATA

- In the setting of supervised learning with discriminative models, we suggest that model identification and data disambiguation can support each other, and should be performed simultaneously.
- Not only the data is telling us something about the model, but also the model (assumptions) about the data.

DATA DISAMBIGUATION

The more biased the view, the less ambiguous the data looks like.

DATA DISAMBIGUATION

$O=\{0, O\}$

assume both class distributions to be Gaussian

DATA DISAMBIGUATION

DATA DISAMBIGUATION

$O=\{0, O\}$

OUTLINE

EMPIRICAL RISK MINIMIZATION

Given a set of (i.i.d.) training data and a hypothesis space $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$, find a model with minimal empirical risk

$$
\mathcal{R}_{e m p}(h)=\frac{1}{N} \sum_{i=1}^{N} L\left(h\left(\boldsymbol{x}_{i}\right), y_{i}\right)
$$

In general, ERM won't work well (unless N is large)...

GENERALIZED ERM

We propose a principle of generalized empirical risk minimization with the empirical risk

$$
\mathcal{R}_{e m p}^{*}(h)=\frac{1}{N} \sum_{n=1}^{N} L^{*}\left(Y_{n}, h\left(\boldsymbol{x}_{n}\right)\right)
$$

and the optimistic superset loss (OSL) function

$$
L^{*}(Y, \hat{y})=\min \{L(y, \hat{y}) \mid y \in Y\} .
$$

$$
\uparrow
$$

how well the (precise) model
fits the imprecise data

GENERALIZED ERM

We propose a principle of generalized empirical risk minimization with the empirical risk

$$
\mathcal{R}_{e m p}^{* *}(h)=\frac{1}{N} \sum_{n=1}^{N} L^{* *}\left(Y_{n}, h\left(\boldsymbol{x}_{n}\right)\right)
$$

and the optimistic fuzzy superset loss (OFSL) function

$$
L^{* *}(Y, \hat{y})=\int_{0}^{1} L^{*}\left([Y]_{\alpha}, \hat{y}\right) d \alpha
$$

GENERALIZED ERM

- Generalized ERM derives from a likelihood-based approach, which proceeds from $\mathbf{P}(\mathcal{D}, \mathcal{O} \mid h)$,
- and makes (weak) assumptions about the coarsening $\mathbf{P}(\mathcal{O} \mid \mathcal{D}, h)$.
- Further, it exploits additivity of the loss.
- Finally, the logistic loss is replaced by any other loss function.

Why should generalized ERM actually work?

SPECIALCASES

The ϵ-insensitive loss $L(y, \hat{y})=\max (|y-\hat{y}|-\epsilon, 0)$ used in support vector regression corresponds to L^{*} with L the standard L_{1} loss $L(y, \hat{y})=|y-\hat{y}|$ and precise data y_{n} being replaced by interval-valued data $Y_{n}=\left[y_{n}-\epsilon, y_{n}+\epsilon\right]$.

SPECIALCASES

Huber loss

SPECIAL CASES

LABEL RANKING

The Kendall loss used in label ranking:

$$
L(\pi, \hat{\pi})=\sum_{i<j} \llbracket \operatorname{sign}(\pi(i)-\pi(j)) \neq \operatorname{sign}(\hat{\pi}(i)-\hat{\pi}(j)) \rrbracket
$$

- Cheng and H. (2015) compare an approach to label ranking based on superset learning with state-of-the-art approaches.
- Very strong performance, more robust toward incompleteness.

New methods as natural instantiations of the generalized ERM framework!

THEORETICAL FOUNDATIONS

- Under what conditions is (successful) learning in the superset setting actually possible?
- Specifically, under what conditions does generalized ERM work?
- Couldn't the optimism induce a strong bias?
- Might other principles (pessimism, agnosticism) be better?

$$
\begin{aligned}
& L^{*}(Y, \hat{y})=\min \{L(y, \hat{y}) \mid y \in Y\} \\
& L^{*}(Y, \hat{y})=\operatorname{avg}\{L(y, \hat{y}) \mid y \in Y\} \\
& L^{*}(Y, \hat{y})=\max \{L(y, \hat{y}) \mid y \in Y\}
\end{aligned}
$$

THEORETICAL FOUNDATIONS

THEORETICAL FOUNDATIONS

THEORETICAL FOUNDATIONS

AN EXAMPLE

positive class
negative class

$$
h_{\theta}(x)= \begin{cases}+1, & x \geq \theta \\ -1, & x<\theta\end{cases}
$$

AN EXAMPLE

AN EXAMPLE

AN EXAMPLE

All examples are coarsened with probability 0.2 .

AN EXAMPLE

All examples are coarsened with probability 0.2 .

AN EXAMPLE

Examples with x between 1 and 2 are coarsened.

AN EXAMPLE

Examples with x between 1 and 2 are coarsened.

AN EXAMPLE

Positive examples are coarsened with probability $1 / 2$.

$$
\begin{aligned}
& \left(x_{i},+1\right)\left(x_{i},+1\right) \text { with probability } 0.5 \\
& \left(x_{i},\{-1,+1\}\right) \text { with probability } 0.5 \\
& \left.\left(x_{i},-1\right) \longrightarrow 1\right)
\end{aligned}
$$

AN EXAMPLE

Positive examples are coarsened with probability $1 / 2$.

THEORETICAL FOUNDATIONS

The balanced benefit condition:

$$
0 \leq \eta_{1} \leq \inf _{h \in \mathcal{H}} \frac{\mathcal{R}^{*}(h)}{\mathcal{R}(h)} \leq \sup _{h \in \mathcal{H}} \frac{\mathcal{R}^{*}(h)}{\mathcal{R}(h)} \leq \eta_{2} \leq 1,
$$

where $\mathcal{R}^{*}(h)$ is the expected superset loss of h.

For sufficiently large sample size,

$$
\mathcal{R}(\hat{h}) \leq \mathcal{R}\left(h^{*}\right)+\Delta\left(d_{\mathcal{H}}, \epsilon, \delta, \eta_{1}, \eta_{2}\right),
$$

with probability $1-\delta$, where $d_{\mathcal{H}}$ is the Natarajan dimension of \mathcal{H}, h^{*} the Bayes predictor and \hat{h} the minimizer of $\mathcal{R}_{e m p}^{*}$.

THEORETICAL FOUNDATIONS

Liu and Dietterich (2014) consider the ambiguity degree, which is defined as the largest probability that a particular distractor label co-occurs with the true label in multi-class classification:

$$
\gamma=\sup \left\{\mathbf{P}_{Y \sim \mathcal{D}^{s}(\boldsymbol{x}, y)}(\ell \in Y) \mid(\boldsymbol{x}, y) \in \mathcal{X} \times \mathcal{Y}, \ell \in \mathcal{Y}, p(\boldsymbol{x}, y)>0, \ell \neq y\right\}
$$

Let $\theta=\log (2 /(1+\gamma))$ and $d_{\mathcal{H}}$ the Natarajan dimension of \mathcal{H}. Define

$$
n_{0}(\mathcal{H}, \epsilon, \delta)=\frac{4}{\theta \epsilon}\left(d_{\mathcal{H}}\left(\log \left(4 d_{\mathcal{H}}+2 \log L+\log \left(\frac{1}{\theta \epsilon}\right)\right)+\log \left(\frac{1}{\delta}\right)+1\right) .\right.
$$

Then, in the realizable case, with probability at least $1-\delta$, the model with the smallest empirical superset loss on a set of training data of size $n>n_{0}(\mathcal{H}, \epsilon, \delta)$ has a generalisation error of at most ϵ.

OUTLINE

DATA IMPRECISIATION

So far: Imprecision as a necessary evil
Observations are imprecise/incomplete, and we have to deal with that!

Now: Imprecision as a means for modeling Deliberately turn precise into imprecise data, so as to modulate the influence of an observation on the learning process!

Motivated by the following monotonicity property:

$$
Y \subset Y^{\prime} \quad \Rightarrow \quad L^{*}(Y, \cdot) \geq L^{*}\left(Y^{\prime}, \cdot\right)
$$

EXAMPLE WEIGHING

We suggest an alternative way of weighing examples, namely, via „data imprecisiation" ...

modulating the influence of a training example ($\boldsymbol{x}_{i}, y_{i}$) by multiplying the loss with a constant w_{i}.

$$
L^{*}\left(Y_{i}, \cdot\right)
$$

modulating the influence of a training example $\left(\boldsymbol{x}_{i}, y_{i}\right)$ by coarsening the observation y_{i}.

EXAMPLE WEIGHING

We suggest an alternative way of weighing examples, namely, via „data imprecisiation" ...

full support for precise observation

EXAMPLE WEIGHING

Different ways of (individually) discounting the loss function.

In (Lu and H., 2015), we empirically compared standard locally weighted linear regression with this approach and essentially found no difference.

EXAMPLE WEIGHING

We suggest an alternative way of weighing examples, namely, via „data imprecisiation" ...

FUZZY MARGIN LOSSES

GENERALIZED HINGE LOSS

FUZZY MARGIN LOSSES

Different ways of (individually) discounting the loss function.

THE HAT LOSS

Semi-supervised learning with SVMs: Consider unlabeled data as instances labeled with the superset $\{-1,+1\}$. The generalized loss L^{*} with L the standard hinge loss then corresponds to the (non-convex) "hat loss".

DATA DISAMBIGUATION

DATA DISAMBIGUATION

EXPERIMENTS

Robust loss minimization for SVM:

- Robust truncated-hinge-loss support vector machines (RSVM) trains SVMs with the a truncated version of the hinge loss in order to be more robust toward outliers and noisy data (Wu and Liu, 2007).
- One-step weighted SVM (OWSVM) first trains a standard SVM. Then, it weighs each training example based on its distance to the decision boundary and retrains using the weighted hinge loss (Wu and Liu, 2013).
- Our approach (FLSVM) is the same as OWSVM, except for the weighted loss: instead of using a simple weighting of the hinge loss, we use the OSL.

Promising first results, especially competitive in the high-noise regime.

SUMMARY AND OUTLOOK

- Method for superset learning based on optimistic loss minimization, performing simultaneous model identification and data disambiguation.
- Our framework covers several existing methods as special cases but also supports the systematic development of new methods.
- Completely generic principle (classification, regression, structured output prediction, ...)
- Example weighing via data imprecisiation (\rightarrow „modeling data")
- Works for regression and classification, but seems to be even more interesting for other problems, including ranking, transfer learning, ...
- More future work: Algorithmic solutions for specific instantiations of our framework, theoretical foundations, non-additive losses, ...

REFERENCES

E. Hüllermeier (2014). Learning from Imprecise and Fuzzy Observations: Data Disambiguation through Generalized Loss Minimization. International Journal of Approximate Reasoning, 55(7):1519-1534, 2014.
first paper introducing the general framework
E. Hüllermeier and W. Cheng (2015). Superset Learning Based on Generalized Loss Minimization. Proc. ECML/PKDD 2015.
instantiation for label ranking
S. Lu and E. Hüllermeier. Locally Weighted Regression through Data Imprecisiation. Workshop Computational Intelligence, Dortmund, 2015.
instantiation for locally weighted regression
S. Lu and E. Hüllermeier. Support Vector Classification on Noisy Data using Fuzzy Superset Losses. Workshop Computational Intelligence, Dortmund, 2016.
instantiation for noise-tolerant classification

