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... is a specific type of weakly supervised learning, studied under different 
names in machine learning:

- learning from partial labels
- multiple label learning
- learning from ambiguously labeled examples
- ...

... also connected to learning from coarse data in statistics (Rubin, 1976; Heitjan and
Rubin, 1991), missing values, data augmentation (Tanner and Wong, 2012),

... as well as data modeling based on generalized sets and measures, such as fuzzy
data (Kwakernaak, 1978; Kruse and Meyer, 1987; Puri and Ralescu, 1986; Coppi et al., 
2006; Bandemer and Näther, 2011; Viertl, 2011) and belief functions (Denoeux, 1995).
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data generating
process

loss function

Given a set of (i.i.d.) training data

D =
n

(x1, y1), . . . , (xN , yN )
o

⇢ X ⇥ Y

and a hypothesis space H ⇢ YX
, find a model with low risk

R(h) =

Z

X⇥Y
L
�

h(x), y
�

dP(x, y) .
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loss L(y, s) = f(ys)

0/1 loss

hinge  loss

0
signed score

ys = y(!>
x)
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• Set of imprecise/ambiguous/coarse observations

O =
�
(x1, Y1), . . . , (xN , YN )

 

with supersets Yn 3 yn.

• An instantiation of O, denoted D, is obtained by replacing each Yn

with a candidate yn 2 Yn.

one of infinitely
many instantiations
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set of consistent
completions

A � C

incomplete
observation

In label ranking, we learn mappings from instances to rankings:

x 7! A � C � D � B
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precise
DATAMODEL

generation imprecise
DATA

imprecisiation

coarsening

P�(O |D)P✓(D)

• We are interested in learning with weak assumptions about the

coarsening process, and learning algorithms ought to be robust with

respect to these assumptions.

• Similar to epistemic random set setting (⌦, P, Y ), but with little

knowledge about multi-valued mapping Y : ⌦ ! 2Y .

• Discriminative learning, not generative.



§ In the setting of supervised learning with discriminative models, we suggest
that model identification and data disambiguation can support each other, 
and should be performed simultaneously.

§ Not only the data is telling us something about the model, but also the model
(assumptions) about the data.

identification

disambiguation

L E A R N I N G  F R O M  S E T- VA L U E D  D ATA

14

DATA MODEL
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classes
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classes

The more biased the view, the less ambiguous the data looks like.



D ATA D I S A M B I G U AT I O N

20

−4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

4

5

6

7

8

=	{						,							}

assume both class distributions to be Gaussian
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plausible 
instantiation

=	{						,							}

assume both class distributions to be Gaussian

quadratic
discriminant
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less plausible 
instantiation

=	{						,							}

assume both class distributions to be Gaussian
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In general, ERM won’t work well (unless N is large)…

Given a set of (i.i.d.) training data and a hypothesis space H ⇢ YX
, find

a model with minimal empirical risk

Remp(h) =
1

N

NX

i=1

L
�
h(xi), yi

�
.
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how well the (precise) model
fits the imprecise data

We propose a principle of generalized empirical risk minimization with
the empirical risk

R⇤
emp(h) =

1

N

NX

n=1

L⇤�Yn, h(xn)
�

and the optimistic superset loss (OSL) function

L⇤(Y, ŷ) = min
�
L(y, ŷ) | y 2 Y

 
.
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We propose a principle of generalized empirical risk minimization with
the empirical risk

R⇤⇤
emp(h) =

1

N

NX

n=1

L⇤⇤�Yn, h(xn)
�

and the optimistic fuzzy superset loss (OFSL) function

L⇤⇤(Y, ŷ) =

Z 1

0
L⇤

⇣
[Y ]↵, ŷ

⌘
d↵

.
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• Generalized ERM derives from a likelihood-based approach, which

proceeds from P(D,O |h),

• and makes (weak) assumptions about the coarsening P(O |D, h).

• Further, it exploits additivity of the loss.

• Finally, the logistic loss is replaced by any other loss function.

Why should generalized ERM actually work?
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Huber loss

L⇤⇤(Y, ŷ)
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(generalized) Huber loss
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The Kendall loss used in label ranking:

L(⇡, ⇡̂) =
X

i<j

r
sign(⇡(i)� ⇡(j)) 6= sign(⇡̂(i)� ⇡̂(j))

z

– Cheng and H. (2015) compare an approach to label ranking based
on superset learning with state-of-the-art approaches.

– Very strong performance, more robust toward incompleteness.

New methods as natural instantiations of the 
generalized ERM framework!
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§ Under what conditions is (successful) learning in the superset 
setting actually possible?

§ Specifically, under what conditions does generalized ERM work?

§ Couldn’t the optimism induce a strong bias?

§ Might other principles (pessimism, agnosticism) be better?

L⇤
(Y, ŷ) = min

�
L(y, ŷ) | y 2 Y

 

L⇤
(Y, ŷ) = avg

�
L(y, ŷ) | y 2 Y

 

L⇤
(Y, ŷ) = max

�
L(y, ŷ) | y 2 Y
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add

add

systematic (adversarial) coarsening
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add

add

non-systematic (random) coarsening

or
or

add or
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positive class

negative class

h✓(x) =

⇢
+1 , x � ✓

�1 , x < ✓
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R(h✓)

threshold ✓
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R(h✓)

threshold ✓

Remp(h✓)
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All examples are coarsened with probability 0.2.

(xi, yi)

(xi, yi) with probability 0.8

(xi, {�1,+1}) with probability 0.2
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R(h✓)

R⇤(h✓)

threshold ✓

All examples are coarsened with probability 0.2.
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Examples with x between 1 and 2 are coarsened.

(xi, yi)

(xi, {�1,+1}) if xi 2 [1, 2]

(xi, yi) otherwise
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R⇤(h✓)

R(h✓)

threshold ✓

Examples with x between 1 and 2 are coarsened.
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Positive examples are coarsened with probability 1/2.

(xi,+1)

(xi,+1) with probability 0.5

(xi, {�1,+1}) with probability 0.5

(xi,�1) (xi,�1)
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R⇤(h✓)

R(h✓)

threshold ✓

Positive examples are coarsened with probability 1/2.
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The balanced benefit condition:

0  ⌘1  inf
h2H

R⇤(h)
R(h)

 sup
h2H

R⇤(h)
R(h)

 ⌘2  1 ,

where R⇤(h) is the expected superset loss of h.

For su�ciently large sample size,

R(ĥ)  R(h⇤) +�(dH, ✏, �, ⌘1, ⌘2) ,

with probability 1� �, where dH is the Natarajan dimension of H, h⇤
the

Bayes predictor and ĥ the minimizer of R⇤
emp.
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Let ✓ = log(2/(1 + �)) and dH the Natarajan dimension of H. Define

n0(H, ✏, �) =
4

✓✏

✓
dH

✓
log(4dH + 2 logL+ log

✓
1

✓✏

◆◆
+ log

✓
1

�

◆
+ 1

◆
.

Then, in the realizable case, with probability at least 1� �, the model with

the smallest empirical superset loss on a set of training data of size

n > n0(H, ✏, �) has a generalisation error of at most ✏.

Liu and Dietterich (2014) consider the ambiguity degree, which is

defined as the largest probability that a particular distractor label

co-occurs with the true label in multi-class classification:

� = sup
n

PY⇠Ds(x,y)(` 2 Y ) | (x, y) 2 X ⇥ Y, ` 2 Y, p(x, y) > 0, ` 6= y
o
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So far: Imprecision as a necessary evil
Observations are imprecise/incomplete, and we have to deal with that!

Now: Imprecision as a means for modeling
Deliberately turn precise into imprecise data, so as to modulate the
influence of an observation on the learning process!

Motivated by the following monotonicity property:

Y ⇢ Y 0 ) L⇤(Y, ·) � L⇤(Y 0, ·)
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L(yi, ·)

wi L(yi, ·) L⇤(Yi, ·)

modulating the influence of a training

example (xi, yi) by multiplying the

loss with a constant wi.

modulating the influence of a

training example (xi, yi) by

coarsening the observation yi.

We suggest an alternative way of weighing examples, namely, via 
„data imprecisiation“ ...



E X A M P L E  W E I G H I N G

50

We suggest an alternative way of weighing examples, namely, via 
„data imprecisiation“ ...

1

11

full support for
precise observation
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Different ways of (individually) discounting the loss function.

lo
s

s

In (Lu and H., 2015), we empirically compared standard locally weighted
linear regression with this approach and essentially found no difference. 

weighted loss

OSL 
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certainly positive

We suggest an alternative way of weighing examples, namely, 
via „data imprecisiation“ ...

1
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G E N E R A L I Z E D  H I N G E  L O S S

w=1
w=3/4

w=1/2

w=1/4

w=0
score s

loss f(ys)
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Different ways of (individually) discounting the loss function.

w=1 
w=3/4 

w=1/2 

w=1/4 

w=0 

w=1 
w=3/4 

w=1/2 

w=1/4 

w=0 

weighted lossOSL 
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the	hat	loss
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Robust loss minimization for SVM:

§ Robust truncated-hinge-loss support vector machines (RSVM) trains SVMs with the
a truncated version of the hinge loss in order to be more robust toward outliers and
noisy data (Wu and Liu, 2007).

§ One-step weighted SVM (OWSVM) first trains a standard SVM. Then, it weighs each
training example based on its distance to the decision boundary and retrains using the
weighted hinge loss (Wu and Liu, 2013).

§ Our approach (FLSVM) is the same as OWSVM, except for the weighted loss: instead
of using a simple weighting of the hinge loss, we use the OSL.

Promising first results, especially competitive in the high-noise regime.
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§ Method for superset learning based on optimistic loss minimization, 
performing simultaneous model identification and data disambiguation.

§ Our framework covers several existing methods as special cases but 
also supports the systematic development of new methods. 

§ Completely generic principle (classification, regression, structured
output prediction, ...)

§ Example weighing via data imprecisiation (à „modeling data“) 

§ Works for regression and classification, but seems to be even more
interesting for other problems, including ranking, transfer learning, ... 

§ More future work: Algorithmic solutions for specific instantiations of our
framework, theoretical foundations, non-additive losses, ...

59
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