Markov chains

An introduction

Consider a generic continuous-time stochastic process
(X:)icr.,» Where for all + € R the state X; is a random
variable that takes values x in the finite state space 2. We
provide 2 with some ordering, such that any real-valued
function f on 2 can be identified with a row vector. We
furthermore let 2 (2") denote the set of all real-valued
functions on 2. Then any linear operator T: Z(Z") —
Z(Z) can be identified with a matrix.

The stochastic process (X;).cr., iS a precise (continuous-
time) Markov chain (pMCQ) if it satisfies the Markov property:
where n > 0 is an integer and {t,...,t,,s,t} is a strictly
increasing sequence of non-negative time points. The
transition matrix T! thus defined satisfies

T f1(xs) = E(f(X0) | Xs = xy) (P1)
=E(f(X)|X;, = x1,-.., X, = X, Xy = X;).

A pMC is called stationary if it satisfies T = T = T,
for all t,A € R-. In this case, there is a unique transition
rate matrix Q—a matrix with non-negative off-diagonal
elements and rows that sum up to zero—such that

(Vt ERsp) Ta=T' ™~ I+AQ for A suff. small.

Furthermore, T, then satisfies the differential equation
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Similarly, for any non-stationary pMC there is a time-
dependent transition rate matrix Q, such that

with T, = 1. (P2)

(Vt € Rso) T/ =~ I+ AQ, for A suff. small.

It is often infeasible to precisely specity the transition rate
matrix Q of a stationary pMC. Furthermore, assuming
stationarity is not always justified. Therefore, we here
consider the case where the (time-dependent) transition
rate matrix Q, of a (non-stationary) pMC is only known to
be contained in some (non-empty and bounded) set 2.
In other words, we consider the set Py of all pMCs that
are consistent with 2, in the sense that

(Vt € R>0)(3Q; € 2) T ~ I+ AQ; for A suff. small.

This set Py characterises an imprecise (continuous-time)
Markov chain (iMC) as follows. Analogous to (P1), we define
a lower transition operator T' as

[Igf] (xS) = E(f(Xt) ‘XS — xS) (11)
— E(f(Xt)‘th = X1y--- 7th — meS — xs)a

where E(-|-) is the minimum of the conditional expecta-
tions that are induced by the set of consistent processes.

In case 2 has separately specified rows, Krak et al. (2017)
show that '™ = T§ = T, for all t,A € R>,. Moreover,
they show that 7', is the unique operator that satisfies
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In (12), O is the so-called lower transition rate operator of

2, which, forany f € Z(Z) andx € 2, is defined as
Of](x) :=min{[Qf](x): Q € 2}. (13)

with T, = 1. (12)

Ergodicity

We are often interested in the long-term limit behaviour
of stationary pMCs and iMCs. For iMCs, a special case is
when

tliI_iI_l T.fl(x)=E_(f) forallfe Z(Z)andxe Z .
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If this is the case, then the iMC is said to be ergodic and
E.(f) is called the limit lower expectation. Similarly, a
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stationary pMC is ergodic if

lim [T,f](x) =E.(f) forall fe Z(Z)andxe X,

t— o0

where E.. is now called the limit expectation.
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Guaranteed approximation methods

From an application point of view on

(or iIMCs, as introduced in Markov chains:
An introduction), it is essential to have an efficient computational
method to numerically approximate T, f for some f € Z (%) and
somet € R.y. We are specifically interested in methods that yield
an approximation @, f of T, f such that the error ||T,f — &, f]|| is lower
than some desired maximal error €. For ergodic iMCs, it is often
also essential to approximate E_(f), see for instance Modelling
spectrum assignment in a two-service flexi-grid optical link.

Some theoretical results

Throughout this poster, we let 2 be a finite and ordered state space,
and 0: Z(Z') — Z(XZ) a generic
For any f € Z (%), we define

Ifll =max{|f(x)|: xc 2} and [/f] = (maxf—minf)/2.

A first—although minor—result we prove is that

Q| =sup{||Qf| : £ €L(2),|fll =1} =2max{|[QL](x)|: x € 2}

The two computational methods with guaranteed error bounds we
consider are based on the following theorem.

Theorem 1. Fix some f € £ (Z) and t € R~. Let ®,f be an approxima-
tion of T, f. Then for any 6 € R~ such that ¢ ||Q|| <2 and any m € N,

|, msf — (I +8Q)"®,f || < T, — Df]| +m8 (O [|P.f ||,

For any lower transition operator T (a super-additive, positively homoge-
neous operator that dominates the minimum), Skulj and Hable (2013)
define the coefficient of ergodicity

p(T) == max{2|Tf||,: f € L(2),0<f<1} (1)

Obtaining the solution of the optimisation problem in (1) is, in general,
infeasible. However, we prove that a computable upper bound is

o(T) < p(T) = max{ max_([TT4](x) — [TT4)(y)) : 0 £ A C %} 2)

X yeZ

where T, := —T(—I4). The following novel theorem is useful because,
forall f € #2(2),meNand é € Ry suchthat §||Q| <2,

[(1+80)"f|| <p((T+8Q)") If. <P(I+8Q)™ | fll..  (3)

Theorem 2./f Q is ergodic (De Bock, 2017), then there is some n < | 2’|
such that, for any m > n and any § € R~ that satisfies & || Q|| <2,

p((I+009)") <p((I+00Q)") <1.

Uniform approximation method

The uniform approximation method was introduced by (Krak et al.,
2017). They suggest to approximate T, f with W(o,n) f, where

P(S5,n) = (I+8Q)"

and ¢t = no. Given some desired maximal error € € R, they propose a
way to select the required number of grid steps n—or equivalently, the

step size 0 =t/n—which a priori guarantees that | T,f —W¥(0,n)f|| < €.

We modity their method in two ways:
(i) we use a less conservative lower bound for »n; and
(i) we a posteriori compute a tighter guaranteed error bound &’.

Algorithm 1: Uniform approximation
go f,€+0

n < [max{ r]|Ql| /2 .2 || Q]| |1 /Il /€}]
0<t/n
fori=0,....n—1do

e &' +8]10]" |zl

8it1 < &+ 00g;
return7,f =g, +e(orT,f=g,+¢€)

> If interested in a tighter error bound

As a consequence of Theorems 1and 2 and Eqn. (3), in case Q is ergodic,
an alternative a priori guaranteed upper bound for the error is

1 — k 1 — k
IT.f = 2@mfl < 8|l Ifl 7 < [l I/, 1_’; ,

where k== [n/m|, ot .= p((I+0Q)") and p == p((I+00)™).

(4)
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Adaptive approximation method

We observe that in practice, the a posteriori determined error bound &’
is often much smaller than the desired maximal error €. By combining
Theorems 1 and 2, we find that one way to get the posterior error
bound closer to € is to increase the step size 0 over time.

In the adaptive approximation method we propose, we achieve this by
re-evaluating the step size after every m iterations.

Algorithm 2: Adaptive approximation
g0 fLA+1i< 0,0
while A >0 and ||g;||. > 0 do
1< 1+1
6i A m1n{A,2/ HQ
if mo, > A then
m; < |A/0;]
6,' — A/m,
else m; +— m
8i < 8i-1
repeat m; times
e '+ 87|12 llsil.
gi < &+ 008
A A—m,-5
return7,f =g, +e(orT,f =g L€

e/(e]|el] lgii]l)}

> If interested in a tighter error bound

Computational comparison

We compare the uniform and adaptive approximation methods using
the Healthy-Sick model introduced in (Krak et al., 2017). The obtained
results are collected in the table below, where n is the number of
iterations and D (D) is the duration in seconds of the computations
without (with) keeping track of £’. We chose € = 107

n D D’ g’
Uniform 80000 0.414 1.19 4.20x10°

Adaptive (m=1) 34360 0.593 0.856 1.00 x 10~*
Adaptive (m = 10) 34369 0.224 0.529 1.00 x 10~*

Approximating E_.( f)

Let O be the transition rate matrix of a stationary and ergodic
. Then

lim [T, f](x) =E.(f) forall fe Z(%Z)andallxe 2.
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It is well known that E.. is the unique expectation operator that satisfies
E.(Qf)=0 forall fe L(%Z).

Consequently, it is also the unique expectation operator that, for all
0 € R such that o ||Q|| < 2, satisfies

Eo.((I+060Q0)f) =E.(f) forall fe Z(Z).

By the theory of discrete-time Markov chains, the above equality actu-
ally implies that, for all 6 € R.y such that 6 ||Q| < 2,

E.(f)= lim (I4+0Q)"f forall fe Z(Z).

n—»—00

In the imprecise case, all these nice connections do not necessarily
hold. Let O be the lower transition rate operator of an ergodic iMC.
Then

lim [T, f](x) =E.(f) forall fe (% )andallxe %2,

t— oo

where E_ is a lower expectation operator. Unfortunately, it does not
hold in general that

E.(Qf)=0 forall feZ2(Z)
or that, for all § € R. such that 6 ||Q|| < 2,

E.((I+8Q)f) =E.(f) forall fe.2(2)

Therefore, to the best of our knowledge, the only way to approxi-
mate E_(f) = lim,_,...|T, f](x) is to use an approximation ®,f of T, f. If
\Z,f—®.fl| < €/2 and ||Pf|. < €/2, then

max P, f +mind; f
5 S

E.(f)




