
Markov chains
An introduction

Consider a generic continuous-time stochastic process

(Xt)t∈R≥0, where for all t ∈ R≥0 the state Xt is a random

variable that takes values x in the finite state spaceX . We

provideX with some ordering, such that any real-valued

function f onX can be identified with a row vector. We

furthermore letL (X ) denote the set of all real-valued
functions onX . Then any linear operator T : L (X )→
L (X ) can be identified with a matrix.

Precise Markov chains
The stochastic process (Xt)t∈R≥0 is a precise (continuous-
time) Markov chain (pMC) if it satisfies the Markov property:
where n ≥ 0 is an integer and {t1, . . . , tn,s, t} is a strictly
increasing sequence of non-negative time points. The

transition matrix T t
s thus defined satisfies

[T t
s f ](xs) = E( f (Xt)|Xs = xs) (P1)

= E( f (Xt)|Xt1 = x1, . . . ,Xtn = xn,Xs = xs).

A pMC is called stationary if it satisfies T t+∆
t = T ∆

0 =: T∆

for all t,∆ ∈ R≥0. In this case, there is a unique transition
rate matrix Q—a matrix with non-negative off-diagonal
elements and rows that sum up to zero—such that

(∀t ∈ R≥0) T∆ = T t+∆

t ≈ I +∆Q for ∆ suff. small.

Furthermore, Tt then satisfies the differential equation

d
dt

Tt = QTt, with T0 = I. (P2)

Similarly, for any non-stationary pMC there is a time-

dependent transition rate matrix Qt such that

(∀t ∈ R≥0) T t+∆

t ≈ I +∆Qt for ∆ suff. small.

Imprecise Markov chains
It is often infeasible to precisely specify the transition rate

matrix Q of a stationary pMC. Furthermore, assuming
stationarity is not always justified. Therefore, we here

consider the case where the (time-dependent) transition

rate matrix Qt of a (non-stationary) pMC is only known to

be contained in some (non-empty and bounded) set Q.
In other words, we consider the set PQ of all pMCs that

are consistent withQ, in the sense that

(∀t ∈ R≥0)(∃Qt ∈Q) T t+∆

t ≈ I +∆Qt for ∆ suff. small.

This set PQ characterises an imprecise (continuous-time)
Markov chain (iMC) as follows. Analogous to (P1), we define
a lower transition operator T t

s as

[T t
s f ](xs) := E( f (Xt)|Xs = xs) (I1)

= E( f (Xt)|Xt1 = x1, . . . ,Xtn = xn,Xs = xs),

where E(·|·) is the minimum of the conditional expecta-
tions that are induced by the set of consistent processes.

In caseQ has separately specified rows, Krak et al. (2017)

show that T t+∆
t = T ∆

0 =: T ∆ for all t,∆ ∈ R≥0. Moreover,

they show that T ∆ is the unique operator that satisfies

d
dt

T t = QT t, with T 0 = I. (I2)

In (I2), Q is the so-called lower transition rate operator of
Q, which, for any f ∈L (X ) and x ∈X , is defined as

[Q f ](x) := min{[Q f ](x) : Q ∈Q} . (I3)

Ergodicity
We are often interested in the long-term limit behaviour

of stationary pMCs and iMCs. For iMCs, a special case is

when

lim
t→+∞

[T t f ](x) = E∞( f ) for all f ∈L (X ) and x ∈X .

If this is the case, then the iMC is said to be ergodic and
E∞( f ) is called the limit lower expectation. Similarly, a
stationary pMC is ergodic if

lim
t→+∞

[Tt f ](x) = E∞( f ) for all f ∈L (X ) and x ∈X ,

where E∞ is now called the limit expectation.
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Guaranteed approximation methods
From an application point of view on imprecise (continuous-time) Markov chains (or iMCs, as introduced in Markov chains:An introduction ), it is essential to have an efficient computational
method to numerically approximate T t f for some f ∈L (X ) and
some t ∈ R>0. We are specifically interested in methods that yield

an approximation Φt f of T t f such that the error ‖T t f −Φt f‖ is lower
than some desired maximal error ε . For ergodic iMCs, it is often

also essential to approximate E∞( f ), see for instance Modellingspectrum assignment in a two-service flexi-grid optical link .
Some theoretical results
Throughout this poster, we letX be a finite and ordered state space,

and Q : L (X )→ L (X ) a generic lower transition rate operator.
For any f ∈L (X ), we define

‖ f‖ := max{| f (x)| : x ∈X } and ‖ f‖c := (max f −min f )/2.

A first—although minor—result we prove is that∥∥Q
∥∥ := sup

{∥∥Q f
∥∥ : f ∈L (X ),‖ f‖= 1

}
= 2max{

∣∣[QIx](x)
∣∣ : x ∈X }.

The two computational methods with guaranteed error bounds we

consider are based on the following theorem.

Theorem 1. Fix some f ∈L (X ) and t ∈ R≥0. Let Φt f be an approxima-
tion of T t f . Then for any δ ∈ R≥0 such that δ ‖Q‖ ≤ 2 and any m ∈ N,∥∥T t+mδ f − (I +δQ)m

Φt f
∥∥≤ ‖T t f −Φt f‖+mδ

2‖Q‖2‖Φt f‖c .

For any lower transition operator T (a super-additive, positively homoge-
neous operator that dominates the minimum), Škulj and Hable (2013)

define the coefficient of ergodicity
ρ(T ) := max{2‖T f‖c : f ∈L (X ),0≤ f ≤ 1}. (1)

Obtaining the solution of the optimisation problem in (1) is, in general,

infeasible. However, we prove that a computable upper bound is

ρ(T )≤ ρ(T ) := max
{

max
x,y∈X

(
[T IA](x)− [T IA](y)

)
: /0 6= A⊂X

}
, (2)

where T IA :=−T (−IA). The following novel theorem is useful because,
for all f ∈L (X ), m ∈ N and δ ∈ R≥0 such that δ

∥∥Q
∥∥≤ 2,∥∥(I +δQ)m f

∥∥
c
≤ ρ((I +δQ)m)‖ f‖c ≤ ρ((I +δQ)m)‖ f‖c . (3)

Theorem 2. If Q is ergodic (De Bock, 2017), then there is some n < |X |
such that, for any m≥ n and any δ ∈ R>0 that satisfies δ

∥∥Q
∥∥< 2,

ρ((I +δQ)m)≤ ρ((I +δQ)m)< 1.

Uniform approximation method
The uniform approximation method was introduced by (Krak et al.,

2017). They suggest to approximate T t f with Ψ(δ ,n) f , where

Ψ(δ ,n) :=
(
I +δQ

)n

and t = nδ . Given some desired maximal error ε ∈R>0, they propose a

way to select the required number of grid steps n—or equivalently, the
step size δ = t/n—which a priori guarantees that ‖T t f −Ψ(δ ,n) f‖ ≤ ε .

We modify their method in two ways:

(i) we use a less conservative lower bound for n; and
(ii) we a posteriori compute a tighter guaranteed error bound ε ′ .

Algorithm 1:Uniform approximation
g0← f , ε ′← 0
n←

⌈
max{ t

∥∥Q
∥∥/2 , t2

∥∥Q
∥∥2‖ f‖c/ε}

⌉
δ ← t/nfor i = 0, . . . ,n−1 do

ε ′← ε ′+δ 2
∥∥Q
∥∥2‖gi‖c . If interested in a tighter error bound

gi+1← gi+δQgireturn T t f = gn± ε (or T t f = gn± ε ′)

As a consequence of Theorems 1 and 2 and Eqn. (3), in caseQ is ergodic,
an alternative a priori guaranteed upper bound for the error is

‖T t f −Ψ(δ ,n) f‖ ≤ δ
2
∥∥Q
∥∥2‖ f‖c

1−αk

1−α
≤ δ

2
∥∥Q
∥∥2‖ f‖c

1−β k

1−β
, (4)

where k := dn/me, α := ρ((I +δQ)m) and β := ρ((I +δQ)m).

Adaptive approximation method
We observe that in practice, the a posteriori determined error bound ε ′

is often much smaller than the desired maximal error ε . By combining

Theorems 1 and 2, we find that one way to get the posterior error

bound closer to ε is to increase the step size δ over time.

In the adaptive approximation method we propose, we achieve this by

re-evaluating the step size after every m iterations.

Algorithm 2: Adaptive approximation
g0← f , ∆← t, i← 0, ε ′← 0while ∆ > 0 and ‖gi‖c > 0 do

i← i+1

δi←min{∆,2/
∥∥Q
∥∥ ,ε/(t ∥∥Q

∥∥2‖gi−1‖c)}if mδi > ∆ then
mi← d∆/δie
δi← ∆/mielse mi← m

gi← gi−1repeat mi times
ε ′← ε ′+δ 2

i

∥∥Q
∥∥2‖gi‖c . If interested in a tighter error bound

gi← gi+δiQgi

∆← ∆−miδreturn T t f = gi± ε (or T t f = gi± ε ′)

Computational comparison
We compare the uniform and adaptive approximation methods using

the Healthy-Sick model introduced in (Krak et al., 2017). The obtained

results are collected in the table below, where n is the number of
iterations and D (D′) is the duration in seconds of the computations
without (with) keeping track of ε ′. We chose ε = 10−4

.

n D D′ ε ′

Uniform 80000 0.414 1.19 4.29×10−5

Adaptive (m = 1) 34360 0.593 0.856 1.00×10−4

Adaptive (m = 10) 34369 0.224 0.529 1.00×10−4

Approximating E∞( f )

Let Q be the transition rate matrix of a stationary and ergodic preciseMarkov chain. Then
lim

t→+∞
[Tt f ](x) = E∞( f ) for all f ∈L (X ) and all x ∈X .

It is well known that E∞ is the unique expectation operator that satisfies

E∞(Q f ) = 0 for all f ∈L (X ).

Consequently, it is also the unique expectation operator that, for all

δ ∈ R>0 such that δ ‖Q‖< 2, satisfies

E∞((I +δQ) f ) = E∞( f ) for all f ∈L (X ).

By the theory of discrete-time Markov chains, the above equality actu-

ally implies that, for all δ ∈ R>0 such that δ ‖Q‖< 2,

E∞( f ) = lim
n→+∞

(I +δQ)n f for all f ∈L (X ).

In the imprecise case, all these nice connections do not necessarily

hold. Let Q be the lower transition rate operator of an ergodic iMC.
Then

lim
t→+∞

[T t f ](x) = E∞( f ) for all f ∈L (X ) and all x ∈X ,

where E∞ is a lower expectation operator. Unfortunately, it does not

hold in general that

E∞(Q f ) = 0 for all f ∈L (X ),

or that, for all δ ∈ R>0 such that δ
∥∥Q
∥∥< 2,

E∞((I +δQ) f ) = E∞( f ) for all f ∈L (X ).

Therefore, to the best of our knowledge, the only way to approxi-

mate E∞( f ) = limt→+∞[T t f ](x) is to use an approximation Φt f of T t f . If
‖T t f −Φt f‖ ≤ ε/2 and ‖Φt f‖c ≤ ε/2, then∣∣∣∣E∞( f )−maxΦt f +minΦt f

2

∣∣∣∣≤ ε.


