Options We choose between abstract options, collected in a vector space \mathcal{F}, ordered by a reflexive vector ordering \preceq, whose irreflexive part is defined by $u \succ u \iff (u < v \wedge u \neq v)$ for all u and v in \mathcal{F}. \mathcal{F} is the collection of non-empty but finite subsets of \mathcal{U}.

Choice functions A choice function on \mathcal{F} is a map

$C : \mathcal{F} \to \mathcal{P}(\mathcal{F}) \setminus \{\emptyset\}$

such that $C(A) \subseteq A$.

Rationality axioms We call a choice function C on \mathcal{F} coherent if for all $A, B, C \in \mathcal{F}$, $A \subseteq B$, $A \subseteq C$, and $B \cap C = \emptyset$, then $C(A) \subseteq (C(B) \cap C(C))$.

A useful map Use the special coherent set of indifferent options I, to find alternative expressions for the equivalent classes $[u] = \{u + v : v \in C(A)\}$, and the vector ordering \leq on \mathcal{F}^2.

A useful map $\text{CoM}: \mathcal{F}^2 \to \mathcal{F}$.

To define coherent choice functions, we only need an ordered linear space.

Is there a de Finetti-like Representation theorem?

Polynomial gambles Consider the 3^*-space $\mathcal{S}_N = \{0 \in \mathbb{R}^3 : \sum_0^N 1 = 1\}$, and the linear space $\mathcal{F}^*(\mathcal{S}_N)$ of polynomial gambles x on \mathcal{S}_N that are restricted to \mathcal{S}_N of multivariate polynomials p on \mathbb{R}^3, in the sense that $n(0) = p(0)$ for all $n \in \mathcal{F}^*$.

Bernstein gambles For any $n \in \mathbb{N}$ and any $m \in \mathbb{R}$, the Bernstein basis polynomial B_n^m on \mathcal{S}_N is given by $B_n^m(|t|) := \sum_{i=0}^{n} \binom{n}{i} m^i (1-m)^{n-i}$ for all $n \in \mathbb{R}^3$. The restriction to \mathcal{S}_N is called a Bernstein gamble, which we also denote by $B_n^m : \mathcal{S}_N \to \mathcal{F}$.

Is there a representation that does not depend on counts?

Cylindrical extension In case of infinitely many exchangeable X_i, the global possibility space is \mathcal{N}^∞. We identify any gamble f on \mathcal{S}_N with its cylindrical extension

$\text{Cyl}(f) : \{\mathcal{S}_i \in \mathcal{N}^\infty : i \in \mathbb{N}\} \to \mathcal{S}_N$.

for all $i \in \mathbb{N}$. Using this convention, we can identify $\text{Cyl}(f)$ with a subset in \mathcal{S}_N. Gambles of finite structure We will call any gamble that depends only on a finite number of variables a gamble of finite structure. We collect all such gambles in $\mathcal{S}_N^{(\infty)} = \{f \in \mathcal{S}_N^{(\infty)} : \text{all } f_i \in \mathcal{S}_N^{(\infty)}\}$. The subject assesses the sequence of variables X_1, X_2, \ldots to be exchangeable; he is indifferent between any gamble f on \mathcal{S}_N and its permuted variant f^π, for any π in \mathcal{S}_N^{∞}; and the sequence X_1, X_2, \ldots is exchangeable, in the sense that it is an infinite sequence of independent and identically distributed random variables.

What about the countable case?

Theorem 4 (Countable Representation). A choice function C on $\mathcal{S}_N^{(\infty)}$ is countable (countably exchangeable if C is compatible with $\mathcal{S}_N^{(\infty)}$ if and only if there is a unique representing choice function C on $\mathcal{S}_N^{(\infty)}$ such that

$C(A) = \{f : A \cap C(A) - C(A)\}$

for all $A \in \mathcal{S}_N^{(\infty)}$. Furthermore, in that case, C is given by $C(A) = H(C(A)) - H(C(A))$ for all $A \in \mathcal{S}_N^{(\infty)}$. Finally, C is coherent if and only if C is.

Can we add assessments?

Category permutation invariance Suppose that, in addition to exchangeability, the subject also has reason not to distinguish between the different elements of $\mathcal{F} := \{1, \ldots, k\}$: consider any permutation of \mathcal{F} and any outcome $X_i \in \{X_1, \ldots, X_k\}$, then he has reason not to distinguish between X_i and $X_{i'}$ for any $i, i' \in \mathcal{F}$. With any gamble f on \mathcal{F} there corresponds a permuted gamble \tilde{f}, given by $\tilde{f}(i) = f(i')$ for all $i \in \mathcal{F}$.