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Context

What is the suitable country to visit?

Which book should I buy for my next vacation?

Which movie should I watch?

etc.
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Context
How much information can we handle?

A plethora of information

Confusion.

Wasting time.

Reaching unsatisfiable
options.
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Context

⇒ Recommender systems provide recommendations based on
users’ preferences.
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Collaborative filtering approach

The collaborative filtering (CF) is the most widely used
recommendation approach.

The collaboration between users to filter out relevant
items.
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Collaborative filtering approach

User-based

Predicts the active
user’s preferences based
on past ratings from
users similar to him.

Item-based

Computes how similar a
set of items the active
user has rated, to the
target item.

R. Abdelkhalek, I. Boukhris and Z. Elouedi — A Clustering Approach for CF under the Belief Function Framework 6/39



Collaborative filtering approach

User-based

Predicts the active
user’s preferences based
on past ratings from
users similar to him.

Item-based

Computes how similar a
set of items the active
user has rated, to the
target item.

R. Abdelkhalek, I. Boukhris and Z. Elouedi — A Clustering Approach for CF under the Belief Function Framework 6/39



Collaborative filtering approach

User-based

Predicts the active
user’s preferences based
on past ratings from
users similar to him.

Item-based

Computes how similar a
set of items the active
user has rated, to the
target item.

R. Abdelkhalek, I. Boukhris and Z. Elouedi — A Clustering Approach for CF under the Belief Function Framework 6/39



Collaborative filtering approach

Items: The products on which the recommender system aims
to predict the users’ preferences.
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Item-based CF approach

Item-Based CF

Selecting similar items in the system to predict the user’s
preferences.
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Item-based CF approach
Example
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Motivation

Limitations

CF needs to search the whole user- item space to
compute items similarities.

This computation leads to poor scalability performance.

⇒ Clustering items to reduce the consuming time.
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Motivation

Problem statement

Does not take into account the uncertainty involved
during the clusters assignments.

An item may potentially belong to more than only one
cluster.

⇒ Soft clustering
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Objectives

1 Dealing with the uncertain aspect of the
items’ clustering.

2 Improving the sacalability of the CF
approach under uncertainty.

⇒ Maintaining a good recommendation
performance.

Goal

A Clustering Approach for Collaborative Filtering under the
Belief Function Framework
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Belief function theory
Basic Concepts

Definition

A flexible and rich framework for dealing with imperfect
information.

Frame of discernment: Θ

Θ = {θ1, θ2.....θn}

2Θ = {A : A ⊆ Θ}

Basic belief assignment: bba

m : 2Θ → [0, 1]∑
A⊆Θ

m(A) = 1
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Belief function theory
Combination rule

The combination rules combine the bba’s induced from
independent information sources into a unique one.

Dempster’s rule of combination

(m1 ⊕m2)(A) = k .
∑

B,C⊆Θ:B∩C=A

m1(B) ·m2(C )

k−1 = 1−
∑

B,C⊆Θ:B∩C=A

m1(B) ·m2(C ) and (m1⊕m2)(∅) = 0
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Belief function theory
Decision making

Pignistic probability

BetP(A) =
∑
B⊆Θ

|A ∩ B |
|B |

m(B)

(1−m(∅))
for all A ∈ Θ
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Belief function theory
Clustering techniques

Examples

Belief K-modes: Dealing with uncertainty in the attribute
values.

Evidential C-means: Handling uncertainty for objects’
assignment.

...
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Evidential C-means

Allows a credal partition of the
objects.

Principle

Determining the mass mi representing partial knowledge
regarding the cluster membership to any subset of Θ.

Θ = {ω1, ω2, . . . , ωn} .

n is the number of clusters.
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Evidential C-means
ECM

Principle

Every partition is represented
by a prototype vk ∈ Rp.

Each subset Aj of Θ is
represented by the barycenter
vj of the centers vk .
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Evidential C-means
ECM

Objective Criterion

The credal partition is determined by minimizing the
following objective function:

JECM =
n∑

i=1

∑
{j/Aj 6=∅,Aj⊆Θ}

| Aαj | m
β
ijd

2
ij +

n∑
i=1

δ2mβ
i∅

α ≥ 0 is a weighting exponent for cardinality.

β > 1 is a weighting exponent controlling the hardness of
the partition.

δ represents the distance between all instances and the
empty set.

R. Abdelkhalek, I. Boukhris and Z. Elouedi — A Clustering Approach for CF under the Belief Function Framework 19/39



Evidential C-means
ECM

Objective Criterion

The credal partition is determined by minimizing the
following objective function:

JECM =
n∑

i=1

∑
{j/Aj 6=∅,Aj⊆Θ}

| Aαj | m
β
ijd

2
ij +

n∑
i=1

δ2mβ
i∅

α ≥ 0 is a weighting exponent for cardinality.

β > 1 is a weighting exponent controlling the hardness of
the partition.

δ represents the distance between all instances and the
empty set.

R. Abdelkhalek, I. Boukhris and Z. Elouedi — A Clustering Approach for CF under the Belief Function Framework 19/39



Outline

1 Introduction

2 Belief Function Theory

3 Collaborative Filtering Recommender

4 Evidential Clustering Collaborative Filtering

5 Experimental Study

6 Conclusion and Future Works

R. Abdelkhalek, I. Boukhris and Z. Elouedi — A Clustering Approach for CF under the Belief Function Framework 19/39



Collaborative Filtering

Basic concepts

Target item: The current item for which we would like
to predict users’ preferences

Active user: The user for whom the task is to find items’
suggestions.

Rating ru,i : The preference expressed by the user u for
the item i in the system.

User-item matrix: The set of all rating triples (User,
Item, Rating).
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Collaborative Filtering
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Collaborative Filtering
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Evidential Clustering CF

Step1

Items Clustering

Step2

Clusters Selection

Step3

Ratings Prediction
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Step1: Items Clustering

Principle

1 Exploiting the user-item matrix and randomly initializing
the cluster centers.

2 Computing the euclidean distance between the items and
the non empty subsets of Θ.

3 Allocating for each item in the matrix a mass of belief to
any subsets of the Θ.
⇒ Credal partition.

R. Abdelkhalek, I. Boukhris and Z. Elouedi — A Clustering Approach for CF under the Belief Function Framework 24/39



Step1: Items Clustering

Principle

1 Exploiting the user-item matrix and randomly initializing
the cluster centers.

2 Computing the euclidean distance between the items and
the non empty subsets of Θ.

3 Allocating for each item in the matrix a mass of belief to
any subsets of the Θ.
⇒ Credal partition.

R. Abdelkhalek, I. Boukhris and Z. Elouedi — A Clustering Approach for CF under the Belief Function Framework 24/39



Step1: Items Clustering

Principle

1 Exploiting the user-item matrix and randomly initializing
the cluster centers.

2 Computing the euclidean distance between the items and
the non empty subsets of Θ.

3 Allocating for each item in the matrix a mass of belief to
any subsets of the Θ.
⇒ Credal partition.

R. Abdelkhalek, I. Boukhris and Z. Elouedi — A Clustering Approach for CF under the Belief Function Framework 24/39



Step1: Items Clustering

Principle

1 Exploiting the user-item matrix and randomly initializing
the cluster centers.

2 Computing the euclidean distance between the items and
the non empty subsets of Θ.

3 Allocating for each item in the matrix a mass of belief to
any subsets of the Θ.
⇒ Credal partition.

R. Abdelkhalek, I. Boukhris and Z. Elouedi — A Clustering Approach for CF under the Belief Function Framework 24/39



Step1: Items Clustering
Example

User-item matrix

Movie1 Movie2 Movie3 Movie4 Movie5

User1 3 ? 4 1 2
User2 4 4 2 ? ?
User3 3 2 4 3 2
User4 ? 1 5 2 3
User5 5 2 0 2 5

The clustering process consists of providing a credal
partition for the 5 movies.
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Step1: Items Clustering
Example

The credal partition corresponding to the five movies (c=3)

∅ {C1} {C2} {C1,C2} {C3} {C1,C3} {C2,C3} Θ

M1 0.002 0.968 0.009 0.007 0.004 0.004 0.001 0.001

M2 0.046 0.294 0.271 0.110 0.113 0.073 0.051 0.038

M3 0.005 0.001 0.001 0.004 0.993 0.009 0.001 0.004

M4 0.006 0.021 0.885 0.017 0.024 0.010 0.024 0.009

M5 0.036 0.148 0.493 0.090 0.094 0.047 0.055 0.032
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Step2: Clusters Selection

Principle

Computing the pignistic probability BetPi induced by
each bba.

Assigning each item to the cluster with the highest
pignistic probability.
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Step2: Clusters Selection
Example

The pignistic probabilities corresponding to the five movies

Movies C1 C2 C3 Selected cluster
Movie1 0.9773 0.0144 0.0083 ?
Movie2 0.4188 0.3833 0.1979 ?
Movie3 0.0017 0.0029 0.9953 ?
Movie4 0.0387 0.9155 0.0458 ?
Movie5 0.2374 0.5992 0.1633 ?

Making a final decision about the cluster of each movie.
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Step3: Ratings Prediction
Example

Principle

Extracting the items belonging to the same cluster as the
target item.

Computing the average of the ratings corresponding to
the same clusters members.
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Step3: Ratings Prediction

Rating Computation

The rating prediction is performed as follows:

R̂u,i =

∑
j∈Ci (u) Ruj

|Ci(u)|
Ci(u) is the set of items ∈ to the cluster of the item i
and rated by the user u.

Ruj is the rating given by user u to item j .

|Ci(u)| is the number of items rated by user u in cluster
Ci .
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Step1: Items Clustering
Example

User-item matrix

Movie1 Movie2 Movie3 Movie4 Movie5

User1 3 ? 4 1 2
User2 4 4 2 ? ?
User3 3 2 4 3 2
User4 ? 1 5 2 3
User5 5 2 0 2 5

Clusters C1 C1 C3 C2 C2

The rating R̂1,2 given by User1 to Movie2 ?
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User3 3 2 4 3 2
User4 ? 1 5 2 3
User5 5 2 0 2 5

Clusters C1 C1 C3 C2 C2

The rating R̂1,2 given by User1 to Movie2 ?

Movie2 and Movie1 ∈ C1.

R̂1,2 = 3
1

= 3.
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Experimental study

MoviesLens

943 users

1682 movies

100 000 ratings

Ratings scale: [1,5]
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Evaluation metrics

Mean Absolute Error (MAE)

Evaluating the prediction accuracy.

MAE =

∑
u,i |R̂u,i − Ru,i |
‖R̂u,i‖

Ru,i : Real rating for the user u on the item i

R̂u,i : Predicted rating

‖R̂u,i‖: Total number of the predicted ratings.

⇒ Lower values of MAE = Better prediction accuracy
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Evaluation metrics

Precision

Evaluating the quality of recommendations.

Precision =
IR

IR + UR

IR : Interesting item has been correctly recommended

UR : Uninteresting item has been incorrectly
recommended

⇒ Higher precision values = Better performance
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Evaluation metrics

Scalability Performance

The ability of the recommendation approach to be run
quickly.
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Comparative protocol

Proposed Approach

Evidential
clustering
item-based CF
(EC-IBCF) VS Traditional Approach

Evidential item-based
CF (EV-IBCF)
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Experimental results

• Performance in terms of prediction and recommendation

Traditional approach Proposed aproach
Metric EV-IBCF EC-IBCE

Mean MAE 0.809 0.793
Mean Precision 0.733 0.75

⇒ EC-IBCE has the lowest error values in terms of
Mean MAE.

⇒ EC-IBCE achieves better results in terms of
Mean Precision.
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Experimental results

• Scalability Performance

⇒ The execution time of the clustering CF approach is
substantially lower than the basic evidential CF.
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Conclusion and future works

Conclusion

A new clustering CF approach based on the Evidential
C-Means method.

Maintaining a good scalability and recommendation
performance.

Future works

Relying on the different bba′s corresponding to the
different clusters rather that the most significant one.
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Thank you
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