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Overview

A bit of motivation and context.
Setting up relational Bayesian network specifications.
The descriptive complexity results.

Conclusion: A model theory of Bayesian networks?
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And also textual languages...
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Logical Bayesian Networks (LBNs

carrier(x) | founder(x)
carrier(x) | mother(m, x), father(f, x), carrier(m), carrier(f)
suffers(x) | carrier(x)

Relational Bayesian Networks (RBNs)

burglary(v) = 0.005;

alarm(v) = (burglary(v) : 0.95,0.01);
calls(v,w) = (neighbor(v,w) : (alarm(w) : 0.9, 0.05),0);
alarmed(v) = NoisyOr{calls(w, v)|w : neighbor(w, v)}

model {y ~ std normal(); }




The goal here:

m To study the connection between the language used to specify

Bayesian networks and the expressivity of these Bayesian
networks.

m To do so by resorting to descriptive complexity, a concept from
finite model theory.
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Now, consider relational Bayesian network specifications
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A “fitness’-based model of asymmetric “likeship:
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Model Theory:

m the study of models of formulas in a formal language.
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m the study of models of formulas in a formal language.
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m Since 1970, finite model theory, motivated by:
m applications: databases, complexity theory, language design.
m A central theme:
The connection between a language and
what it can/cannot express.
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Expressivity: Descriptive complexity

Input (string) —— Turing machine ——— YES/NO

Fagin's theorem (ESO captures NP):

A set of strings is in NP
if and only if
the strings are the finite models of a formula in
existential second-order logic.

Example: give relation edge, and test model for 3-colorability.

(Va : (either r(x) or g(x) or b(x))) A

Va,y : edge(x, y) — < Tl )ﬁ:((y)();?) N (( )))Ag(y)) )

Jr,g,b:



So, let's look at Bayesian network specifications...

m A propositional Bayesian network encodes a fixed distribution.

m We can do more with a relational Bayesian network
specification. How much more?
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The complexity class PP

m Consider a probabilistic Turing machine:
m probabilities are assigned to transitions.

m Suppose that, for any input, we get to know (magically)
whether the probability of accepting the input is larger than
1/2.

m The class of sets of strings thus decided within polynomial
time is exactly PP.

m So: PP reflects the complexity of computing probabilities for a

phenomenon that can be simulated by a polynomial
probabilistic Turing machine.



What do relational Bayesian networks specifications capture?

Theorem: Bayesian networks in FFFO “capture” PP

A set of strings is in PP
if and only if
the strings encode the domains/queries with probability > 1/2
for a relational Bayesian network specification.



What do relational Bayesian networks specifications capture?

Theorem: Bayesian networks in FFFO “capture” PP

A set of strings is in PP
if and only if
the strings encode the domains/queries with probability > 1/2
for a relational Bayesian network specification.

m That is: if you have a phenomenon that can be simulated by a
probabilistic Turing machine, it can be modeled by a relational
Bayesian network specification.

m More complex phenomena cannot be modeled with such a
Bayesian network specification (unless complexity classes
collapse!).



Going up to second order

m Suppose we allow second-order quantification in the
specification. For instance:

partitioned < Jpartition : Vx : Vy : (edge(x, y) =
(partition(x) < —partition(y))) .

Theorem: Bayesian networks in ESO “capture” PPNP

PNP

A set of strings is in P

if and only if
the strings encode the domains/queries with probability > 1/2
for an existential second-order Bayesian network specification.



Conclusion

m A framework in which to study the expressivity of Bayesian
network specifications.

m A theory of descriptive complexity for Bayesian networks.
m A “feasible” fragment of finite probabilistic model theory?

m In short: Relational specifications capture PP; existential
second-order specifications capture PPNP.



