The Descriptive Complexity of Bayesian Network Specifications

Fabio G. Cozman and Denis D. Mauá Universidade de São Paulo

July 11, 2017

- **1** A bit of motivation and context.
- 2 Setting up relational Bayesian network specifications.
- **3** The descriptive complexity results.
- 4 Conclusion: A model theory of Bayesian networks?

Bayesian networks, and repetitive patterns...

Bayesian networks, and repetitive patterns...

Plates and Probabilistic Relational Models

Plates and Probabilistic Relational Models

Plates and Probabilistic Relational Models

Logical Bayesian Networks (LBNs)

 $\begin{array}{ll} \mathsf{carrier}(x) \mid & \mathsf{founder}(x) \\ \mathsf{carrier}(x) \mid & \mathsf{mother}(m, x), \mathsf{father}(f, x), \mathsf{carrier}(m), \mathsf{carrier}(f) \\ \mathsf{suffers}(x) \mid & \mathsf{carrier}(x) \end{array}$

Logical Bayesian Networks (LBNs)

 $\begin{array}{ll} \mathsf{carrier}(x) \mid & \mathsf{founder}(x) \\ \mathsf{carrier}(x) \mid & \mathsf{mother}(m, x), \mathsf{father}(f, x), \mathsf{carrier}(m), \mathsf{carrier}(f) \\ \mathsf{suffers}(x) \mid & \mathsf{carrier}(x) \end{array}$

Relational Bayesian Networks (RBNs)

Stan

model
$$\{y \sim std_normal();\}$$

 To study the connection between the language used to specify Bayesian networks and the expressivity of these Bayesian networks.

 To do so by resorting to descriptive complexity, a concept from finite model theory.

Non-root: $X \Leftrightarrow \phi$ where ϕ in a language \mathcal{L}

Now, consider relational Bayesian network specifications

A "fitness"-based model of asymmetric "likeship":

Now, consider relational Bayesian network specifications

A "fitness"-based model of asymmetric "likeship":

lik

ot

$$\mathbb{P}(\operatorname{fan}(\chi)) = 0.2,$$

$$\mathbb{P}(\operatorname{likes}(\chi, y)) \Leftrightarrow (\chi = y) \lor (\operatorname{fan}(\chi) \land \operatorname{fan}(y)) \lor \operatorname{other}(\chi, y),$$

$$\mathbb{P}(\operatorname{other}(\chi, y)) = 0.1.$$

$$fan(a) \quad fan(b) \quad fan(c)$$

$$\operatorname{es}(a, b) \quad \operatorname{likes}(a, c) \quad \operatorname{likes}(b, a) \quad \operatorname{likes}(b, c) \quad \operatorname{likes}(c, a) \quad \operatorname{likes}(c, b)$$

$$\operatorname{her}(a, b) \quad \operatorname{other}(a, c) \quad \operatorname{other}(b, a) \quad \operatorname{other}(c, a) \quad \operatorname{other}(c, b)$$

A "fitness"-based model of asymmetric "likeship":

like

othe

$$\mathbb{P}(\operatorname{fan}(\chi)) = 0.2,$$

$$\mathbb{P}(\operatorname{likes}(\chi, y)) \Leftrightarrow (\chi = y) \lor (\operatorname{fan}(\chi) \land \operatorname{fan}(y)) \lor \operatorname{other}(\chi, y),$$

$$\mathbb{P}(\operatorname{other}(\chi, y)) = 0.1.$$

$$fan(a) \quad fan(b) \quad fan(c)$$

$$fan(b) \quad fan(c) \quad fan(c)$$

$$fan(b) \quad fan(c) \quad fan(c)$$

$$fan(b) \quad fan(c) \quad fan(c) \quad fan(c)$$

$$fan(b) \quad fan(c) \quad fan(c) \quad fan(c) \quad fan(c)$$

$$fan(b) \quad fan(c) \quad fan($$

A "fitness"-based model of asymmetric "likeship":

$$\mathbb{P}(\operatorname{fan}(\chi)) = 0.2,$$

$$\mathbb{P}(\operatorname{likes}(\chi, y)) \Leftrightarrow (\chi = y) \lor (\operatorname{fan}(\chi) \land \operatorname{fan}(y)) \lor \operatorname{other}(\chi, y),$$

$$\mathbb{P}(\operatorname{other}(\chi, y)) = 0.1.$$

A "fitness"-based model of asymmetric "likeship":

$$\begin{split} \mathbb{P}(\mathsf{fan}(\chi)) &= 0.2, \\ \mathbb{P}(\mathsf{likes}(\chi, y)) &\Leftrightarrow (\chi = y) \lor \\ & (\mathsf{fan}(\chi) \land \mathsf{fan}(y)) \lor \\ & \mathsf{other}(\chi, y), \\ \mathbb{P}(\mathsf{other}(\chi, y)) &= 0.1. \end{split}$$

• the study of *models* of formulas in a formal language.

• the study of *models* of formulas in a formal language.

Since 1970, finite model theory, motivated by:

- applications: databases, complexity theory, language design.
- A central theme:

The connection between a language and what it can/cannot express.

Fagin's theorem (ESO captures NP):

A set of strings is in NP if and only if the strings are the finite models of a formula in *existential second-order logic*.

Fagin's theorem (ESO captures NP):

A set of strings is in NP if and only if the strings are the finite models of a formula in *existential second-order logic*.

Example: give relation edge, and test model for 3-colorability.

Fagin's theorem (ESO captures NP):

A set of strings is in NP if and only if the strings are the finite models of a formula in *existential second-order logic*.

Example: give relation edge, and test model for 3-colorability.

$$\exists \mathsf{r},\mathsf{g},\mathsf{b}: \left(\begin{array}{c} (\forall \chi:(\text{ either } \mathsf{r}(\chi) \text{ or } \mathsf{g}(\chi) \text{ or } \mathsf{b}(\chi))) \land & \\ \\ \forall \chi, y: \mathsf{edge}(\chi, y) \to \left(\begin{array}{c} \neg(\mathsf{r}(\chi) \land \mathsf{r}(y)) \land \neg(\mathsf{g}(\chi) \land \mathsf{g}(y)) \\ \land \neg(\mathsf{b}(\chi) \land \mathsf{b}(y)) \end{array}\right) \right)$$

- A propositional Bayesian network encodes *a fixed* distribution.
- We can do more with a relational Bayesian network specification. How much more?

The complexity class PP

- Consider a *probabilistic* Turing machine:
 - probabilities are assigned to transitions.
- Suppose that, for any input, we get to know (magically) whether the probability of accepting the input is larger than 1/2.

- Consider a *probabilistic* Turing machine:
 - probabilities are assigned to transitions.
- Suppose that, for any input, we get to know (magically) whether the probability of accepting the input is larger than 1/2.

- The class of sets of strings thus decided within polynomial time is *exactly* PP.
- So: PP reflects the complexity of computing probabilities for a phenomenon that can be simulated by a polynomial probabilistic Turing machine.

What do relational Bayesian networks specifications capture?

Theorem: Bayesian networks in FFFO "capture" PP

A set of strings is in PP ${ m if}$ and only if the strings encode the domains/queries with probability > 1/2 for a relational Bayesian network specification.

Theorem: Bayesian networks in FFFO "capture" PP

A set of strings is in PP ${ m if}$ and only if the strings encode the domains/queries with probability > 1/2 for a relational Bayesian network specification.

- That is: if you have a phenomenon that can be simulated by a probabilistic Turing machine, it can be modeled by a relational Bayesian network specification.
- More complex phenomena *cannot* be modeled with such a Bayesian network specification (unless complexity classes collapse!).

Suppose we allow second-order quantification in the specification. For instance:

$$\begin{array}{ll} \mathsf{partitioned} & \Leftrightarrow & \exists \mathsf{partition} : \forall \chi : \forall y : (\mathsf{edge}(\chi, y) \Rightarrow \\ & (\mathsf{partition}(\chi) \Leftrightarrow \neg \mathsf{partition}(y))) \, . \end{array}$$

Theorem: Bayesian networks in ESO "capture" PP^{NP}

A set of strings is in PP^{NP} if and only if

the strings encode the domains/queries with probability >1/2 for an existential second-order Bayesian network specification.

- A framework in which to study the expressivity of Bayesian network specifications.
 - A theory of descriptive complexity for Bayesian networks.
 - A "feasible" fragment of finite *probabilistic* model theory?

 In short: Relational specifications capture PP; existential second-order specifications capture PP^{NP}.