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Plates and Probabilistic Relational Models
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And also textual languages...

Logical Bayesian Networks (LBNs)

carrier(x) | founder(x)
carrier(x) | mother(m, x), father(f , x), carrier(m), carrier(f )
suffers(x) | carrier(x)

Relational Bayesian Networks (RBNs)

burglary(v) = 0.005;
alarm(v) = (burglary(v) : 0.95, 0.01);

calls(v ,w) = (neighbor(v ,w) : (alarm(w) : 0.9, 0.05), 0);
alarmed(v) = NoisyOr{calls(w , v)|w : neighbor(w , v)}

Stan

model {y ∼ std_normal(); }



And also textual languages...

Logical Bayesian Networks (LBNs)

carrier(x) | founder(x)
carrier(x) | mother(m, x), father(f , x), carrier(m), carrier(f )
suffers(x) | carrier(x)

Relational Bayesian Networks (RBNs)

burglary(v) = 0.005;
alarm(v) = (burglary(v) : 0.95, 0.01);

calls(v ,w) = (neighbor(v ,w) : (alarm(w) : 0.9, 0.05), 0);
alarmed(v) = NoisyOr{calls(w , v)|w : neighbor(w , v)}

Stan

model {y ∼ std_normal(); }



The goal here:

To study the connection between the language used to specify
Bayesian networks and the expressivity of these Bayesian
networks.

To do so by resorting to descriptive complexity, a concept from
finite model theory.



A framework, for propositional languages (Poole 1993)
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∨(¬V ∧ Z )
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Non-root: X ⇔ φ where φ in a language L
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Now, consider relational Bayesian network specifications

A “fitness”-based model of asymmetric “likeship”:

P(fan(x )) = 0.2,
P
(
likes(x , y)

)
⇔ (x = y) ∨

(fan(x ) ∧ fan(y)) ∨
other(x , y),

P
(
other(x , y)

)
= 0.1.
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Model Theory:

the study of models of formulas in a formal language.

Since 1970, finite model theory, motivated by:
applications: databases, complexity theory, language design.
A central theme:
The connection between a language and
what it can/cannot express.
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Expressivity: Descriptive complexity

Input (string) Turing machine YES/NO

Fagin’s theorem (ESO captures NP):

A set of strings is in NP
if and only if

the strings are the finite models of a formula in
existential second-order logic.

Example: give relation edge, and test model for 3-colorability.

∃r, g, b :

 (∀x : ( either r(x ) or g(x ) or b(x )))∧

∀x , y : edge(x , y)→
(
¬(r(x )∧r(y)) ∧ ¬(g(x )∧g(y))

∧¬(b(x ) ∧ b(y))

)
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So, let’s look at Bayesian network specifications...

A propositional Bayesian network encodes a fixed distribution.

We can do more with a relational Bayesian network
specification. How much more?



The complexity class PP

Consider a probabilistic Turing machine:
probabilities are assigned to transitions.

Suppose that, for any input, we get to know (magically)
whether the probability of accepting the input is larger than
1/2.

The class of sets of strings thus decided within polynomial
time is exactly PP.
So: PP reflects the complexity of computing probabilities for a
phenomenon that can be simulated by a polynomial
probabilistic Turing machine.
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What do relational Bayesian networks specifications capture?

Theorem: Bayesian networks in FFFO “capture” PP

A set of strings is in PP
if and only if

the strings encode the domains/queries with probability > 1/2
for a relational Bayesian network specification.

That is: if you have a phenomenon that can be simulated by a
probabilistic Turing machine, it can be modeled by a relational
Bayesian network specification.
More complex phenomena cannot be modeled with such a
Bayesian network specification (unless complexity classes
collapse!).
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Going up to second order

Suppose we allow second-order quantification in the
specification. For instance:

partitioned ⇔ ∃partition : ∀x : ∀y :
(
edge(x , y)⇒

(partition(x )⇔ ¬partition(y))
)
.

Theorem: Bayesian networks in ESO “capture” PPNP

A set of strings is in PPNP

if and only if
the strings encode the domains/queries with probability > 1/2
for an existential second-order Bayesian network specification.



Conclusion

A framework in which to study the expressivity of Bayesian
network specifications.

A theory of descriptive complexity for Bayesian networks.
A “feasible” fragment of finite probabilistic model theory?

In short: Relational specifications capture PP; existential
second-order specifications capture PPNP.


