A TRANSFORMATION SYSTEM FOR UNIQUE MINIMAL NORMAL FORMS OF CONDITIONAL KNOWLEDGE BASES

Christoph Beierle, **Christian Eichhorn**, Gabriele Kern-Isberner July 13

ECSQARU 2017

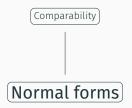
Logical Framework of Conditionals

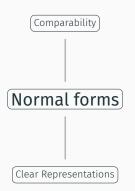
Models for Conditionals and Knowledge Bases

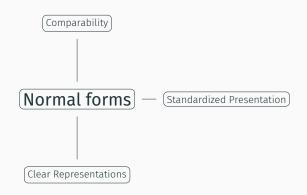
A Transformation System for Conditional Knowledge Bases

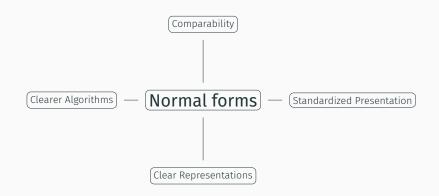
Conclusion

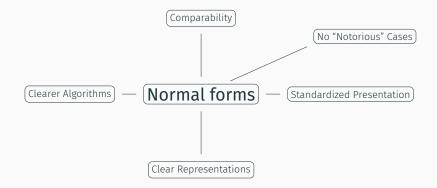
Normal forms

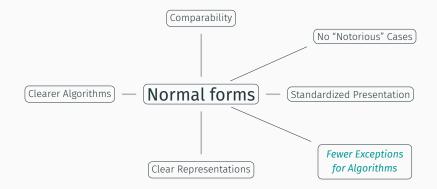


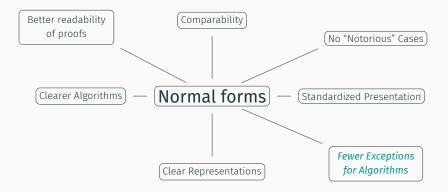


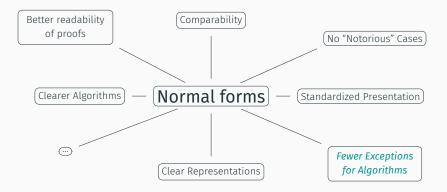












Logical Framework of Conditionals

LOGIC AND WORLDS

We use a standard propositional logic with

- A finite propositional alphabet $\Sigma = \{V_1, \dots, V_m\}$,
- Usual logical connectives \land,\lor,\neg , and
- A language $\mathfrak L$ of literals from Σ closed under these connectives.

We represent the set of **possible worlds** Ω syntactically with complete conjunctions of literals of Σ .

Example (Possible Worlds)

Let $\Sigma = \{C, E, F\}$ be the alphabet with variables for <u>c</u>ar, <u>e</u>-car and <u>f</u>ossil fuel. The possible worlds for this alphabet are:

$$\Omega = \left\{ \, \operatorname{cef}, \, \operatorname{ce\bar{f}}, \, \operatorname{c\bar{e}f}, \, \operatorname{c\bar{e}f}, \, \overline{\operatorname{c}ef}, \, \overline{\operatorname{c}ef}, \, \overline{\operatorname{c}ef}, \, \overline{\operatorname{c}ef} \right\}.$$

Conditionals and Conditional Knowledge Bases

- Conditionals (B|A) encode defeasible rules "If A then usually B".
- Three-valued evaluation by worlds [Fin74]:

$$\llbracket (B|A) \rrbracket_{\omega} = \begin{cases} true & \text{iff } \omega \models AB \quad (\text{``Rule verified''}) \\ false & \text{iff } \omega \models A\overline{B} \quad (\text{``Rule violated''}) \\ undefined & \text{iff } \omega \models \overline{A} \quad (\text{``Rule not applicable''}) \end{cases}$$

• Sets of conditionals $\mathcal{R} = \{(B_1|A_1), ..., (B_n|A_n)\}$ are called *(conditional) knowledge bases.*

Example (Conditionals)

- (f | c) : "Usually cars need fossil fuel."
- $(\bar{f} | e)$: "Usually e-cars do not need fossil fuel."
- (c | e) : "Usually e-cars are cars."

Models for Conditionals and Knowledge Bases

To give appropriate *semantics to conditionals,* they are usually considered within *richer structures* such as *epistemic states.*

Typical Models of Conditionals:

Quantitative

Qualitative

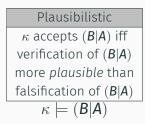
Probabilistic
P accepts ($B A$) iff
$P((\boldsymbol{B} \boldsymbol{A})) = P(\boldsymbol{B} \boldsymbol{A})$
"The Equation".
$P \models (B A)$

Possibilistic	Plausibilistic
Π accepts ($B A$) iff	κ accepts (B A) iff
verification of (B A)	verification of (B A)
more <i>possible</i> than	more <i>plausible</i> than
falsification of (B A)	falsification of (B A)
$\Pi \models (\boldsymbol{B} \boldsymbol{A})$	$\kappa \models (\mathbf{B} \mathbf{A})$

To give appropriate *semantics to conditionals,* they are usually considered within *richer structures* such as *epistemic states.*

Typical Models of Conditionals:

Qualitative



An Ordinal Conditional Function (OCF) or *ranking function* κ is a function that assigns a *degree of disbelief* to each world $\omega \in \Omega$.

Definition (OCF [Spohn '88])

$$\begin{split} \kappa &:= \Omega \to \mathbb{N}_0^\infty \text{ such that:} \\ \kappa^{-1}(0) \neq \varnothing \\ \kappa(A) &= \min\{\kappa(\omega) | \omega \models A\} \\ \kappa(B | A) &= \kappa(AB) - \kappa(A) \\ \kappa &\models (B | A) \text{ iff } \kappa(AB) < \kappa(A\overline{B}) \end{split}$$

Example (Car Ranking)

<u></u> <i>cef</i>	$\kappa(\omega) = 4$
cef,īcef	$\kappa(\omega) = 2$
cef,cēf	$\kappa(\omega) = 1$
$c\overline{e}f,\overline{c}\overline{e}f,\overline{c}\overline{e}\overline{f}$	$\kappa(\omega) = 0$

For knowledge bases we have $\kappa \models \mathcal{R}$ iff $\kappa \models (B|A)$ for all $(B|A) \in \mathcal{R}$.

• A *model* of *formula* is a *world* in which the *formula* is *satisfied*.

• A *model* of *conditional* is an *epistemic state* in which the *conditional* is *accepted*.

- A *model* of *conditional* is an *epistemic state* in which the *conditional* is *accepted*.
- A *formula* is *equivalent* to another *formula* iff both have identical *models*.

- A *model* of *conditional* is an *epistemic state* in which the *conditional* is *accepted*.
- A *conditional* is *equivalent* to another *conditional* iff both have identical *models*.

Example

For instance, $\{(B|A)\} \equiv \{(BA|A)\}$

Two conditional knowledge bases ${\mathcal R}$ and ${\mathcal R}'$ are

• Elementwise equivalent iff

each conditional in ${\cal R}$ is equivalent to a conditional in ${\cal R}'$ and vice versa.

Two conditional knowledge bases ${\mathcal R}$ and ${\mathcal R}'$ are

• Elementwise equivalent iff

each conditional in ${\cal R}$ is equivalent to a conditional in ${\cal R}'$ and vice versa.

• Modelwise equivalent iff

they have the same models, i.e., $\kappa \models \mathcal{R}$ iff $\kappa \models \mathcal{R}'$.

A TRANSFORMATION SYSTEM FOR CONDITIONAL KNOWLEDGE BASES

Intuitively, redundant information should be removed by a normalization, so, let, for instance,

$$\mathcal{R} = \left\{ \begin{array}{ll} r_1 = (f|c), & r_2 = (\bar{f}|e), & r_3 = (c|e), & r_4 = (e|e\bar{f}), \\ r_5 = (e\bar{f}|e), & r_6 = (\bar{e}|\top), & r_7 = (cf \lor \bar{c}f|ce \lor c\bar{e}) \end{array} \right\}$$

Intuitively, redundant information should be removed by a normalization, so, let, for instance,

$$\mathcal{R} = \left\{ \begin{array}{ll} r_1 = (f|c), & r_2 = (\bar{f}|e), & r_3 = (c|e), & r_4 = (e|e\bar{f}), \\ r_5 = (e\bar{f}|e), & r_6 = (\bar{e}|\top), & r_7 = (cf \lor \bar{c}f|ce \lor c\bar{e}) \end{array} \right\}$$

Intuitively, redundant information should be removed by a normalization, so, let, for instance,

$$\mathcal{R} = \left\{ \begin{array}{ll} \mathbf{r_1} = (\mathbf{f}|\mathbf{c}), & \mathbf{r_2} = (\bar{f}|\mathbf{e}), & \mathbf{r_3} = (\mathbf{c}|\mathbf{e}), & \mathbf{r_4} = (\mathbf{e}|\mathbf{e}\bar{f}), \\ \mathbf{r_5} = (\mathbf{e}\bar{f}|\mathbf{e}), & \mathbf{r_6} = (\bar{\mathbf{e}}|\top), & \mathbf{r_7} = (\mathbf{c}f \lor \bar{\mathbf{c}}f|\mathbf{c}e \lor \mathbf{c}\bar{\mathbf{e}}) \end{array} \right\}$$
$$\mathcal{R} \xrightarrow{(\text{normalize})} \{r_1, r_3, r_4, r_5, r_6, r_7\}, \text{ since } \mathbf{e}\bar{f} \equiv \mathbf{e}\mathbf{e}\bar{f}$$

Define a transformation System ${\mathcal T}$ with rules ${\mathfrak r}$ such that

- $\mathfrak{r}(\mathcal{R})$ contains information *equivalent* to \mathcal{R} .
- $\cdot \ \mathcal{T}$ is terminating

(i.e. there is a fixed point Q s.t. $\mathcal{T}^{\mathbb{Q}}(\mathcal{R}) = \mathcal{T}^{\mathbb{Q}+1}(\mathcal{T})$).

- Order of rules application is irrelevant (*confluence*).
- \mathcal{T} is *minimizing*¹ (i.e. $|\mathcal{R}| \leq |\mathcal{T}(\mathcal{R})|$).

Then $\mathcal{T}^{\mathbb{Q}}(\mathcal{R}) = \mathcal{T}(\mathcal{R})$ is a normal form of \mathcal{R} .

¹With respect to given semantics

TRANSFORMATION SYSTEM \mathcal{T} (Rules)

(SF)	self-fulfilling	$\frac{\mathcal{R} \cup \{(B A)\}}{\mathcal{R}}$	$A\models B, A\not\equiv \bot$
(DP)	duplicate	$\frac{\mathcal{R} \cup \{(B A), (B' A')\}}{\mathcal{R} \cup \{(B A)\}}$	$A \equiv A', B \equiv B'$
(CE)	conditional equivalence	$\frac{\mathcal{R} \cup \{(B A), (B' A')\}}{\mathcal{R} \cup \{(B A)\}}$	$AB \equiv A'B', A\overline{B} \equiv A'\overline{B'}$
(PN)	propositional normal form	$\frac{\mathcal{R} \cup \{(\mathbf{B} \mathbf{A})\}}{\mathcal{R} \cup \{(\nu(\mathbf{B}) \nu(\mathbf{A}))\}}$	$\mathbf{A} \neq \nu(\mathbf{A}), \mathbf{B} \neq \nu(\mathbf{B})$
(CN)	conditional normal form	$\frac{\mathcal{R} \cup \{(B A)\}}{\mathcal{R} \cup \{(\nu(AB) \nu(A))\}}$	$B \neq AB$
(CC)	counter conditional	$\frac{\mathcal{R} \cup \{(B A), (\overline{B} A)\}}{\diamond}$	
(SC)	self contradictory	$\frac{\mathcal{R} \cup \{(\boldsymbol{B} \boldsymbol{A})\}}{\diamond}$	$AB \equiv \bot$
(IC)	inconsistency	$\frac{\mathcal{R} \cup \{(B A)\}}{\diamond}$	$\mathcal{R}\neq \diamond \text{, }\Pi(\mathcal{R})=\diamond$

Applying \mathcal{T} , the conditional knowledge base

$$\mathcal{R} = \left\{ \begin{array}{ll} r_1 = (f|c), & r_2 = (\bar{f}|e), & r_3 = (c|e), & r_4 = (e|e\bar{f}), \\ r_5 = (e\bar{f}|e), & r_6 = (\bar{e}|\top), & r_7 = (cf \lor \bar{c}f|ce \lor c\bar{e}) \end{array} \right\}$$

is normalized to

$$\mathcal{R} = \begin{cases} r_1 = (f|c), & r_3 = (c|e), \\ r_5 = (e\bar{f}|e), & r_6 = (\bar{e}|\top), \end{cases}$$

Proposition

The transformation system ${\cal T}$ is

terminating.

• confluent.

• correct.

• minimizing (wrt elementwise equivalence).

Proposition The transformation system \mathcal{T} is

- - terminating.
 confluent.
 - correct. minimizing (wrt elementwise equivalence).

Adding a rule that removes conditionals r_i that are System P entailable from $\mathcal{R} \setminus \{r_i\}$ gives us the property *minimizing* for model equivalence, with this we lose confluence.

CONCLUSION

CONCLUSION

Two types of equivalence for conditional knowledge bases

- *Via models*, like in propositional logic (Different model types possible, here: *OCF*)
 - Elementwise via models of conditionals or
 - *Modelwise* via models of conditional knowledge bases

Normal form for conditional knowledge base

- Set of model preserving rules \rightarrow *transformation system* \mathcal{T} .
- (*Minimizing*)², terminating, correct, confluent.
- $\Rightarrow \ \mathcal{T}(\mathcal{R}) \text{ is a (canonical)}^2 \text{ normal form of } \mathcal{R}.$

²wrt elementwise equivalence

CONCLUSION

Two types of equivalence for conditional knowledge bases

- *Via models*, like in propositional logic (Different model types possible, here: *OCF*)
 - Elementwise via models of conditionals or
 - *Modelwise* via models of conditional knowledge bases

Normal form for conditional knowledge base

- Set of model preserving rules \rightarrow *transformation system* \mathcal{T} .
- (*Minimizing*)², terminating, correct, confluent.
- $\Rightarrow \ \mathcal{T}(\mathcal{R}) \text{ is a (canonical)}^2 \text{ normal form of } \mathcal{R}.$

Thank you for your attention.

²wrt elementwise equivalence

📔 Bruno de Finetti.

Theory of Probability, volume 1,2.

John Wiley and Sons, New York, NY, USA, 1974.

] W. Spohn.

Ordinal conditional functions: a dynamic theory of epistemic states.

In W.L. Harper and B. Skyrms, editors, *Causation in Decision, Belief Change, and Statistics, II*, pages 105–134. Kluwer Academic Publishers, 1988.