

<ロト (部) (注) (注) (注) (注)

Algorithms for Multi-criteria optimization in Possibilistic Decision Trees

Nahla Ben Amor ¹, Fatma Essghaier^{1,2}, Hélène Fargier ²

¹ LARODEC, Le Bardo, Tunisie, ² IRIT, Toulouse, France, email: fargier@irit.fr

The 14 th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty

10-14 July 2017

Introduction	Multi-criteria qualitative utilities	Proposed algorithms	Experimental study	Conclusion & Future work

Context

Multi-criteria optimization in Possibilistic Decision Trees

How would you like to choose your best friend by her looks, her dresses, color of her shoes or her hair-do?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Muti-criteria decision making

Multi-criteria decision making (Without uncertainty)

MCDM aggregation

- Let *Cr* a set of criteria, $u_i(x)$ the utility of consequence x for each of them :
 - Disjunctive (max-based) aggregation : The satisfaction of the DM corresponds to the most satisfied criterion.

$$Agg^{max}(x) = \max_{i \in \mathcal{A}} u_i(x)$$

• Conjunctive (min-based) aggregation : The satisfaction of the DM corresponds to the least satisfied criterion.

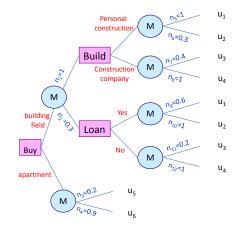
$$Agg^{min}(x) = \min_{i \in \mathcal{A}} u_i(x)$$

When the criteria do not have the same importance, a weight (importance degree) w_i is associated to each of them

Possibilistic decision trees

Possibilistic decision trees [Sabbadin et al., 1998, Garcia and Sabbadin, 2006]

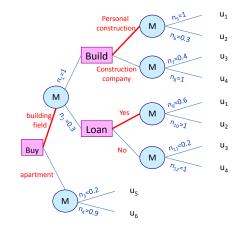
- Explicit modeling of sequential decision problems
- Graphical component : D, C and LN
- Numerical component : conditional possibilities and possibilistic utilities.
- Solving a DT → building a A complete strategy
- decision rules : Uopt / Upes



Possibilistic decision trees

Possibilistic decision trees [Sabbadin et al., 1998, Garcia and Sabbadin, 2006]

- Explicit modeling of sequential decision problems
- Graphical component : D, C and LN
- Numerical component : conditional possibilities and possibilistic utilities.
- Solving a DT → building a complete strategy
- decision rules : U_{opt} / U_{pes}



Possibilistic decision trees

Possibilistic decision trees [Sabbadin et al., 1998, Garcia and Sabbadin, 2006]

 δ^* is an optimal strategy w.r.t. a decision rule O, iff

 $\forall \delta \in \Delta, U_O(\delta^*) \succeq_O U_O(\delta)$

Dynamic Programming

If the decision rule O satisfies

- Transitivity : $L \succ_O L'$ and $L' \succ_O L'' \Rightarrow L \succ_O L''$
- (weak) monotonicity : $L \succeq_O L' \Rightarrow \langle \alpha/L, \beta/L'' \rangle \succeq_O \langle \alpha/L', \beta/L'' \rangle$

then Dynamic programming may be performed.

Strategy optimization in possibilistic decision trees

Qualitative utilities U_{pes} and U_{opt} are transitive and monotonic. \Rightarrow Strategy optimization in polytime using Dynamic programming.

Multi-criteria qualitative decision problem

Multi-criteria qualitative decision problem

$\langle \mathcal{L}, \vec{w}, \vec{u} \rangle$

Given a set of consequence X, a set of criteria $Cr = \{1, \dots, p\}$ we denote : • \mathcal{L} : set of possibilistic lotteries, • $\vec{w} \in [0, 1]^p$: weighting vector,

• $\vec{u} = \langle u_1, \dots, u_p \rangle$: N vectors of p utility functions.

We have to consider

Optimistic or Pessimistic utility, (DM attitude w.r.t. uncertainty)

O Min-based or max-based aggregation, (Multi-criteria aggregation)

Besides we have to...

Precise when the uncertainty have to be considered : before (*ex-ante*) or after (*ex-post*) performing multi-criteria aggregation.

Introduction Multi-criteria qualitative utilities Proposed algorithms Experimental study Conclusion & Future work Multi-criteria Qualitative decision rules Possibilistic Ex-ante utilities [Ben Amor et al., 2014]

Computing (pessimistic or optimistic) utility for each criterion j, then performs the multi-criteria aggregation.

• Pessimistic attitude

$$U_{ante}^{-\min}(L) = \min_{\substack{j=1,p}} \max((1 - w_i), \min_{x_i \in X} \max(u_j(x_i), 1 - L[x_i]))$$
$$U_{ante}^{-\max}(L) = \max_{\substack{j=1,p}} \min(w_i, \min_{x_i \in X} \max(u_j(x_i), 1 - L[x_i]))$$

Optimistic attitude

 $U_{ante}^{+\max}(L) = \max_{\substack{j=1,p}} \min(w_i, \max_{x_i \in X} \min(u_j(x_i), L[x_i]))$ $U_{ante}^{+\min}(L) = \min_{\substack{j=1,p}} \max((1 - w_i), \max_{x_i \in X} \min(u_j(x_i), L[x_i]))$

Pessimistic attitude
Optimistic attitude
Aggregation function

Possibilistic Ex-post utilities [Ben Amor et al., 2014]

Computing the (conjunctive or disjunctive) aggregated utility and then consider the uncertainty (mono-criterion problem).

Pessimistic attitude

$$U_{post}^{-\min}(L) = \min_{x_i \in X} \max(1 - L[x_i], \min_{j=1,p} \max((1 - w_i), u_j(x_i)))$$
$$U_{post}^{-\max}(L) = \min_{x_i \in X} \max(1 - L[x_i], \max_{i=1,p} \min(w_i, u_j(x_i)))$$

Optimistic attitude

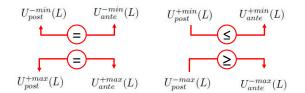
$$U_{post}^{+max}(L) = \max_{x_i \in X} \min(L[x_i], \max_{j=1,p} \min(w_i, u_j(x_i)))$$
$$U_{post}^{+min}(L) = \max_{x_i \in X} \min(L[x_i], \min_{j=1,p} \max((1 - w_i), u_j(x_i)))$$

Pessimistic attitude
Optimistic attitude
Aggregation function

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ クタマ

Multi-criteria Qualitative decision rules

Correlation between decision rules [Ben Amor et al., 2015]



Homogeneous utilities U^{+max} and U^{-min}

$$U_{ante}^{+max}(L) = U_{post}^{+max}(L)$$
 and $U_{ante}^{-min}(L) = U_{post}^{-min}(L)$.

 \hookrightarrow ex-ante and ex-post approaches provide the same results.

Heterogeneous utilities U^{+min} and U^{-max}

 $U_{ante}^{+min}(L) \neq U_{post}^{+min}(L)$ and $U_{ante}^{-max}(L) \neq U_{post}^{-max}(L)$.

 $\hookrightarrow U^{+min}$ and U^{-max} suffer from timing effect.

Problematic and objectives

Solving sequential multi-criteria decision problem under qualitative uncertainty.

₩

- Multi-criteria Possibilistic decision trees (leaves labeled by a utility vector)
- Algorithmic solution and optimal strategy (depends on decision rules properties)
- Experimental study (empirical comparison between algorithms)

ln troduct □──	ion Multi-criteria qualitativ	e utilities Proposed ∎────	algorithms Experimental	study Conclusion &	Future work	
Can we u	se Dynamic Programming?					
Decis	Decision rules properties and algorithms					
	Decision Rule	Transitivity	Weak Monotonicity	Algorithm		
	U_{opt} / U_{pes}	x	x	DynProg		

ln troduct □──	ion Multi-criteria qualitativ	e utilities Proposed ∎□□□□	algorithms Experimental	study Conclusion &	Future work			
Can we u	Can we use Dynamic Programming?							
Decis	sion rules prop	erties and a	algorithms					
	Decision Rule	Transitivity	Weak Monotonicity	Algorithm				
	U_{opt} / U_{pes}	x	x	DynProg				
	Ex-post utilities: U ^{-min} post U ^{+max} post U ^{-max} post U ^{+min} post	x	x	Aggregation + DynProg				

ln troduct □──	ion Multi-criteria qualitativ	e utilities Proposed ∎───	algorithms Experimental	study Conclusion &	Future work		
Can we u	se Dynamic Programming?						
Deci	Decision rules properties and algorithms						
	Decision Rule	Transitivity	Weak Monotonicity	Algorithm			
	U_{opt} / U_{pes}	x	x	DynProg			
	Ex-post utilities: U ^{-min} post U ^{+max} post U ^{-max} post U ^{+min} post	×	x	Aggregation + DynProg			
	Homogenous ex- ante utilities: U ^{-min} ante U ^{+max} ante	x	x	Aggregation + DynProg			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

ln troduct □□□	ion Multi-criteria qualitativ	e utilities Proposed ∎───	algorithms Experimental	study Conclusion &	Future work			
Can we u	se Dynamic Programming?							
Decis	Decision rules properties and algorithms							
	Decision Rule	Transitivity	Weak Monotonicity	Algorithm				
	U_{opt} / U_{pes}	x	x	DynProg				
	Ex-post utilities: U ^{-min} post U ^{+max} post U ^{-max} post U ^{+min} post	×	x	Aggregation + DynProg				
	Homogenous ex- ante utilities: U ^{-min} ante U ^{+max} ante	×	x	Aggregation + DynProg				
	U ^{-max} ante	x	-	?				
	U^{+min}_{ante}	×	-	?	ર ગેલા			

$$U_{ante}^{-max}(L) = \max_{i=1,p} \min(w_i, U_j^{-}(L))$$

- A strategy δ_i^* that optimizes U^- for each criterion j.
- The one with the highest U_{ante}^{-max} is globally optimal (δ^*).

うして ふぼう ふほう ふほう うらう

 \Rightarrow Multi-Dynamic Programming.

Principle of the algorithm

- Consider the utility values of each criterion.
- Compute the pessimistic utility U_j^- by classical Dynamic programming.
- Return all optimal strategies and their corresponding values.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

- Incorporate the weights of criteria.
- Choose the one that maximizes the U_{ante}^{-max} .

$$U_{ante}^{+min}(L) = \min_{j=1,p} \max(1 - w_j, U_j^+(L))$$

- Lack of monotonicity ---> Dynamic programming may be suboptimal.
- Explicit enumeration → Number of possible strategies is exponential.

₩

Implicit enumeration via BB

• The use of bounds combined with the value of the current best solution enables the algorithm to implicitly eliminate sub-trees.

U^{+min}_{ante} : Branch and Bound (Cont.)

Upper Bound

• Provides the best completion of the current strategy δ .

• Builds a strategy δ_j for each criterion that maximizes the optimistic utility U_i^+ (using classical dynamic programming).

うして ふぼう ふほう ふほう うらう

- Selects the one that optimizes U_{ante}^{+min} .
- We can initialize the solution with strategy provided by dynamic programming.
 - \Rightarrow Reduce the algorithm's complexity

Introduction	Multi-criteria qualitative utilities	Proposed algorithms	Experimental study	Conclusion & Future work
Experimental	protocol			
Experir	nents			

Data

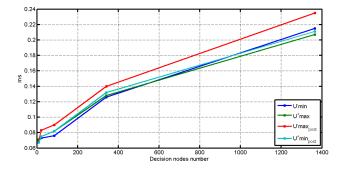
- Randomly generated binary possibilistic trees
 - Number of criteria : 3
 - Horizon (seq) : 2,3,4,5, 6 \Rightarrow |D| = 5, 21, 85, 341, 1365

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ クタマ

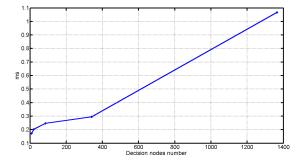
- Utility values, weights and conditional possibilities are randomly fired.
- Feasibility of the proposed algorithms.
- Quality of approximation(by dynamic programming).

Temporal performances

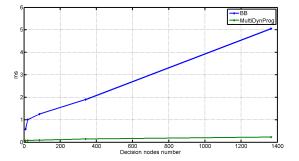
Ex-post utilities : Dynamic Programming



The CPU time increases linearly w.r.t. to the size of the tree.



The CPU time of Multi-Dynamic Programming is very affordable.



Approximation using Dynamic programming is faster than BB.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	Number of Decision Nodes					
	5 21 85 341 1365					
$\frac{V_{Approx}}{V_{Exact}}$	0.97	0.95	0.94	0.93	0.91	

- $\bullet\,\approx\,70\%$ of cases BB optimal strategy is also ex-ante optimal strategy.
- The closeness value $rac{V_{Approx}}{V_{Exact}} > 0.9.$

 \Rightarrow Dynamic programming can find a good strategy, even the optimal one.

	Number of Decision Nodes					
	5	21 85 341 1365				
$\frac{V_{Approx}}{V_{Exact}}$	0.98	0.97	0.94	0.92	0.9	

- \approx 85% of cases BB optimal strategy is also ex-post optimal strategy.
- Very good closeness value.
- \Rightarrow ex-post dynamic programming is better than its ex-ante counterpart.

Conclusion & Future work

Conclusion

- Multi-criteria optimization in possibilistic decision trees.
- Dynamic programming algorithm and variants :
 → Ex-post utilities collapse to classical optimization w.r.t. U⁺/U⁻.
- Multi-dynamic Programming to optimize U_{ante}^{+min} .
- Branch and Bound algorithm for U_{ante}^{+min} (costly algorithm) \hookrightarrow Dynamic programming is a good approximation for U_{ante}^{+min} .

Future work

- Provide a complexity study
- Multi-criteria optimization for more sophisticated decision models (Influence diagrams, Markov decision models,...)
- Consider other (possibilistic or not) decision rules to express uncertainty.

Possibilistic decision making

[Dubois and Prade, 1988a, Dubois and Prade, 1988b]

- Possibilistic distribution : $\pi : \Omega \rightarrow L = [0, 1]$
- Normalization : $\exists s \in S, \max_{s \in S} \pi(s) = 1.$
- Possibilistic lottery : $L = \langle \lambda_1 / x_1, \dots, \lambda_n / x_n \rangle$

 λ_i Possibility degree to obtain outcome x_i .

Qualitative utilities [Dubois and Prade, 1995, Dubois et al., 2001] 💽

- Possibility and utility scales are commensurate
- Pessimistic utility : U_{pes}(L) = min max(1 − L[x_i]), u(x_i)) Evaluates to what extent it is certain (necessary) that L provides a good consequence.

• Optimistic utility : $U_{opt}(L) = \max_{x_i \in X} \min(L[x_i], u(x_i))$ An optimistic counterpart of the pessimistic utility.

Ben Amor, N., Essghaier, F., and Fargier, H. (2014). Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities.

In Proceedings of Information Processing and Management of Uncertainty 2014, pages 269–279.

- Ben Amor, N., Essghaier, F., and Fargier, H. (2015).
 Egalitarian collective decision making under qualitative possibilistic uncertainty : Principles and characterization.
 In Proceedings of Association for the Advancement of Artificial Intelligence Conference 2015, pages 3482–3488.
- 📄 Dubois, D. and Prade, H. (1988a).

Possibility Theory : An Approach to Computerized Processing of Uncertainty (traduction revue et augmentée de Théorie des Possibilités).

Plenum Press.

Dubois, D. and Prade, H. (1988b).

The treatment of uncertainty in knowledge-based systems using fuzzy sets and possibility theory.

International Journal of Intelligent Systems, 3 :141–165.

- Dubois, D. and Prade, H. (1995).
 Possibility theory as a basis for qualitative decision theory.
 In Proceedings of The International Joint Conference on Artificial Intelligence 1995, pages 1924–1930.
- Dubois, D., Prade, H., and Sabbadin, R. (2001). Decision-theoretic foundations of qualitative possibility theory. European Journal of Operational Research, 128(3) :459 – 478.
- Garcia, L. and Sabbadin, R. (2006). Possibilistic influence diagrams.

In Proceedings of ECA1'06, pages 372-376.

Sabbadin, R., Fargier, H., and Lang, J. (1998). Towards qualitative approaches to multi-stage decision making.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

International Journal of Approximate Reasoning, 19(3) :441–471.