The 14th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty

Evidential k-NN for Link Prediction

Sabrine Mallek^{\dagger ‡}, Imen Boukhris^{\dagger}, Zied Elouedi^{\dagger}, Eric Lefèvre^{\ddagger}

[†]Université de Tunis, LARODEC Institut Supérieur de Gestion de Tunis, Tunisia [‡]Université d'Artois, LGI2A, Béthune, France

> Lugano July 2017

Introduction 00000	Contributions	Experiments 0000	Conclusion and Future work
Outline			

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction ●0000	Contributions	Experiments 0000	Conclusion and Future work
Outline			

2 Contributions

3 Experiments

Introduction	Contributions	Experiments 0000	Conclusion and Future work
Motivation			

- Link prediction (LP) is an important scientific issue in SNA that studies network dynamics and evolving.
- Social network (SN) data are prone to observation errors, they are usually noisy and missing.
- Supervised machine learning techniques have been intensively applied to LP. However, most covered algorithms lack functionality to properly manipulate and deal with noisy and **imperfect SN data**.

(ロ) (同) (三) (三) (三) (○) (○)

Introduction	Contributions	Experiments	Conclusion and Future work
0000			

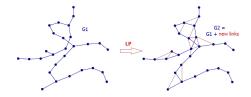
Objective and hypothesis

- Propose a new approach for supervised link prediction that handles social network data imperfection.
- e Handle uncertainty via the belief function theory framework.
- Improve classification accuracy by integrating topological information of the network.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	Contributions	Experiments 0000	Conclusion and Future work
Link predict	ion		

Link prediction addresses the problem of predicting the existence of new/missing relations.



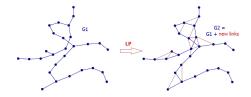
・ コット (雪) (小田) (コット 日)

Applications:

- Infer new relations to be formed in the future
- Expose links that already exist but are not apparent
- Assist users to make new connections

Introduction	Contributions	Experiments 0000	Conclusion and Future work
Link predicti	on		

Link prediction addresses the problem of predicting the existence of new/missing relations.



Most methods compute similarity scores of node-neighborhoods based on network topology.

Popular measures: Common neighbors, Adamic-Adar, Jaccard Coefficient, Ressource allocation, Preferential attachment.

イロト 不良 とくほ とくほう 二日

Introduction	Contributions	Experiments	Conclusion and Future work
00000			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Belief function theory (BFT)

• A general framework for reasoning with uncertainty

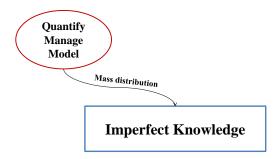
Introduction	Contributions	Experiments	Conclusion and Future work
00000			

• A general framework for reasoning with uncertainty

Imperfect Knowledge

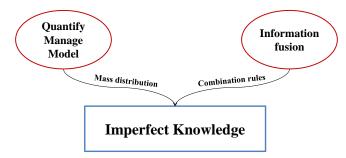
≣⇒

A general framework for reasoning with uncertainty

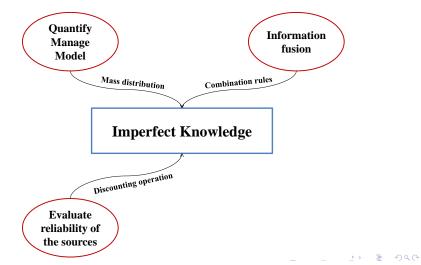


_ E▶ E ���

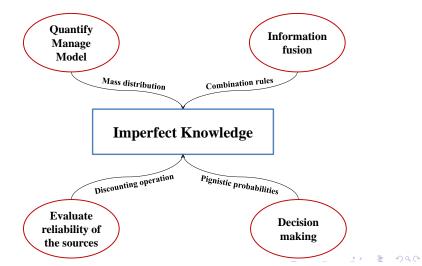
A general framework for reasoning with uncertainty



A general framework for reasoning with uncertainty



A general framework for reasoning with uncertainty



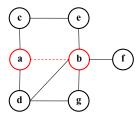
Introduction	Contributions	Experiments	Conclusion and Future work
00000	●OO	0000	
Outline			

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Contributions 000 Experiment

Conclusion and Future work

Detecting *k*-nearest neighbors



Assume that **ab** is the query link

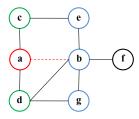
The first step is to detect the neighborhood of ab

Subgraph of a social network

Contributions 000 Experiment

Conclusion and Future work

Detecting *k*-nearest neighbors



-Query link: ab

-First level neighbors of a={c,d} -Second level neighbors of a={e,g,b}

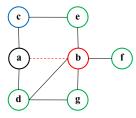
Subgraph of a social network

Contributions

Experiment

Conclusion and Future work

Detecting *k*-nearest neighbors



Subgraph of a social network

-Query link: ab

-First level neighbors of a={c,d}
-Second level neighbors of a={e,g,b}
-First level neighbors of b={e,d,g,f}
-Second level neighbors of b={c}

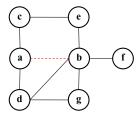
) E ୬ ୦ ୦ ୦

Contributions

Experiment

Conclusion and Future work

Detecting *k*-nearest neighbors



-Query link: ab

-First level neighbors of a={c,d} -Second level neighbors of a={e,g,b} -First level neighbors of b={e,d,g,f} -Second level neighbors of b={c}

Subgraph of a social network

> Neighboring links:

-Links shared with first level neighbors of **a** and first level neighbors of **b** are N¹={**ac**, **ad**, **be**, **bg**, **bd**, **bf**}

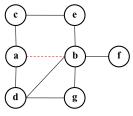
-Links unshared with second level neighbors of a and b are N²={ae, ag, bc}\{ab}

Contributions

Experiment

Conclusion and Future work

Detecting *k*-nearest neighbors



Subgraph of a social network

-Query link: ab

 $-N^{1}=\{ac, ad, be, bg, bd, bf\}$ $-N^{2}=\{ae, ag, bc\}$ $-Let \Omega=\{exist, not exist\} be the set of classes$ $-The classes of the links in N^{1} are exist$

-The classes of the in N² are not exist

-Similarity between ab and their neighboring links in N^1 and N^2 is evaluated according to the Euclidean distance where strutural metrics are used as features.

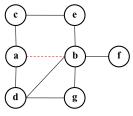
Contributions

Experiment

Conclusion and Future work

э

Detecting *k*-nearest neighbors



Subgraph of a social network

-Query link: ab

 $-N^{1}=\{ac, ad, be, bg, bd, bf\}$ $-N^{2}=\{ae, ag, bc\}$ $-Let \Omega=\{exist, not exist\}$ be the set of classes -The classes of the links in N¹ are exist

-The classes of the in N² are not exist

-Similarity between ab and their neighboring links in N^1 and N^2 is evaluated according to the Euclidean distance where strutural metrics are used as features.

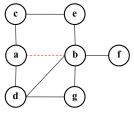
-The *k* links with smallest distances to ab are considered as the *k*-nearest neighbors.

Contributions

Experiment

Conclusion and Future work

Information fusion and prediction



Subgraph of a social network

-Query link: ab

$$\label{eq:nl} \begin{split} &-N^1{=}\{ac,\,ad,\,be,\,bg,\,bd,\,bf\}\\ &-N^2{=}\{ae,\,ag,\,bc\}\\ &-Let\ \Omega{=}\{exist,\,not\,exist\}\ be\ the\ set\ of\ classes\\ &-The\ classes\ of\ the\ links\ in\ N^1\ are\ exist \end{split}$$

-The classes of the in N² are not exist

- Each nearest neighbor represents a source of information regarding the existence of the link ab.

-A mass distribution that quantifies the uncertainty regarding the existence of **ab** is generated from the distances values.

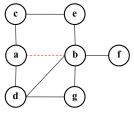
- The masses are constructed based on the intuition that the closer **ab** is to its nearest neighbor according to the distance, the more likely for **ab** to have the same class.

Contributions

Experiment

Conclusion and Future work

Information fusion and prediction



Subgraph of a social network

-Query link: ab

$$\label{eq:nonlinear} \begin{split} &\cdot N^1{=}\{ac,\,ad,\,bc,\,bg,\,bd,\,bf\}\\ &\cdot N^2{=}\{ac,\,ag,\,bc\}\\ &\cdot Let\ \Omega{=}\{exist,\,not\ exist\}\ be\ the\ set\ of\ classes\\ &\cdot The\ classes\ of\ the\ links\ in\ N^1\ are\ exist\\ &\cdot The\ classes\ of\ the\ in\ N^2\ are\ not\ exist \end{split}$$

-The classes of the lift in are not exist

- Masses given by all the nearest neighbors are fused using the belief function theory conjunctive rule of combination.

- Finally, decision about the membership of ab to one of the classes in Ω is made by comparing the masses on the events exist and not exist

- If the mass on the event exist is higher than the mass on the event not exist, than ab is predicted, it is not predicted otherwise.

Introduction 00000	Contributions	Experiments ●000	Conclusion and Future work
Outline			

Introduction	Contributions	Experiments 0000	Conclusion and Future work

Experimental setup

- Experiments are performed on a component of a real social network of Facebook friendships with 1K actors and 10K links
- A comparative study is made with the classical k-NN classifier
- The accuracy of 10-fold cross validation is used as evaluation by adding randomly generated false links of the same size as the subsamples at each time.
- A preprocessing phase is first conducted to compute local similarity scores of all the links to reduce computational time.
- Different values of the number of nearest neighbors *k* are tested ranging from 1 to 15.
- The behavior of our algorithms to class imbalance is evaluated by increasing the number of negative instances (non existing links) at each time.

Introduction	Contributions	Experiments	Conclusion and Future work
		0000	

Results: Parameter *k* evaluation

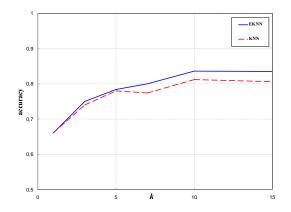


Figure: Accuracy results according to the values of k for evidential k-NN: uncertainty + network topology, and the classical k-NN: network topology, applied to Facebook dataset.

0000 000 000 000 000	Introduction	Contributions	Experiments	Conclusion and Future work
			0000	

Results: Class imbalance test

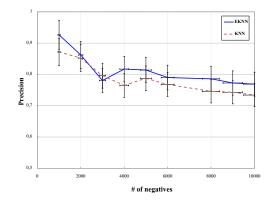


Figure: Precision results for k = 15 according to the increase of negative links, for the evidential *k*-NN: uncertainty + network topology, and the classical *k*-NN: network topology, applied to Facebook dataset.

ъ

Introduction	Contributions	Experiments	Conclusion and Future work
00000		0000	●00
Outline			

2 Contributions

3 Experiments

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Contributions	Experiments	Conclusion and Future work
00000		0000	○●○

- Link prediction (LP) has been used in many fields of science, as online social networks where links can be recommended as promising friendships.
- Here LP is reformulated into a binary classification problem by extending the evidential *k*-NN classifier to take network topological properties into account.
- Uncertainty is addressed thanks to the belief function theory tools.
- Experiments confirm the efficiency of the novel framework and show that it handles skewness in social network data.
- In future work, other information could be integrated such as node attributes to add semantics to the LP task.

(ロ) (同) (三) (三) (三) (○) (○)

Thank you

