Towards a Cautious Modelling of Missing Data in Small Area Estimation

ISIPTA '17, Lugano

Julia Plass¹, Aziz Omar^{1,2}, Thomas Augustin¹

 $^{\rm 1}$ Department of Statistics, Ludwig-Maximilians University and $^{\rm 2}$ Department of Mathematics, Insurance and Appl. Statistics, Helwan University

11th of July 2017

Aziz Omar

"Towards a Cautious Modelling of Missing Data in Small Area Estimation"

Thomas Augustin Julia Plass

Aziz Omar

"Towards a Cautious Modelling of Missing Data in Small Area Estimation"

Thomas Augustin Julia Plass

Aziz Omar

"Towards a Cautious Modelling of Missing Data in Small Area Estimation"

Thomas Augustin Julia Plass

"Towards a Cautious Modelling of Missing Data in Small Area Estimation"

Thomas Augustin Julia Plass

Aziz Omar

- Existing approaches for dealing with nonresponse in SAE are based on strong assumptions on the missingness process
- Such assumptions are usually not testable, and wrongly imposing them may lead to biased results.

(Manski, 2003, Partial Identification of Probability Distributions, Jaeger, 2006, ECML,...)

Population with N individuals

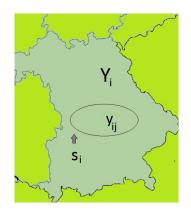
- Population with N individuals
- M areas, each contains N_i individuals, i = 1,..., M

- Population with N individuals
- M areas, each contains N_i individuals, i = 1, ..., M
- Of interest: Area-specific mean \bar{Y}_i

- Population with N individuals
- M areas, each contains N_i individuals, i = 1,..., M
- Of interest: Area-specific mean \bar{Y}_i
- Problem:
 For each area, only sample s_i with small sample size n_i available
- \Rightarrow Using auxiliary variables (covariates) X_1, \dots, X_k
- \Rightarrow "borrowing strength"

- Population with N individuals
- M areas, each contains N_i individuals, i = 1,..., M
- Of interest: Area-specific mean \bar{Y}_i
- Problem:
 For each area, only sample s_i with small sample size n_i available
- \Rightarrow Using auxiliary variables (covariates) X_1, \dots, X_k
- \Rightarrow "borrowing strength"

• Binary variable of interest \Rightarrow probability that Y_i is equal to 1 $:= \pi_i$ (poverty rate)



- Binary variable of interest \Rightarrow probability that Y_i is equal to 1 $:= \pi_i$ (poverty rate)
- $1/w_{ij}$ is the probability that individual j in area i is selected in s_i
- Sample values y_{ij} known for $j \in s_i$
- Sample data from German General Social Survey (GESIS Leibniz Institute for the Social Sciences, 2016), y_{ij} = 1: 'poor', y_{ij} = 0: 'rich'

- Binary covariates (Abitur, sex)
- Cross classifications of the covariates \Rightarrow subgroup g, $g = 1, \dots, v$
- Known absolute frequencies N_i^[g]
 Federal Statistical Office's data report:

		Abitur	
		no	yes
sex	male	$N_i^{[1]}$	$N_i^{[2]}$
368	male female	$N_i^{[3]}$	$N_i^{[4]}$

- Binary covariates (Abitur, sex)
- Cross classifications of the covariates \Rightarrow subgroup g, $g = 1, \dots, v$
- Known absolute frequencies N_i^[g]
 Federal Statistical Office's data report:

		Abitur	
		no	yes
sex	male	$N_i^{[1]}$	$N_i^{[2]}$
SEX	female	$N_i^{[3]}$	$N_i^{[4]}$

• Joint information about x_{ij} and y_{ij} \Rightarrow We know y_{ij} for $j \in s_i^{[g]}$

What's the problem? \Rightarrow 2. Missing data

- some sample values y_{ij} are missing
- $ullet s_i^{[g]}$ is partitioned into $s_{i,obs}^{[g]}$ and $s_{i,mis}^{[g]}$

Cautious Approach for Dealing with Nonresponse

(ISIPTA '15, Plass, Augustin, Cattaneo, Schollmeyer)

- An observation model is determined by the missingness parameters $q_{na|y}^{[g]}$ (:= probability to refuse the answer ("na"), given subgroup g and the true value y)
- Maximizing the log-likelihood

$$\begin{split} &\ell(\pi^{[g]},\ q_{n\mathsf{a}|0}^{[g]},\ q_{n\mathsf{a}|1}^{[g]}) = n_1^{[g]} \Big(\ln(\pi^{[g]}) + \ln(1 - q_{n\mathsf{a}|1}^{[g]}) \Big) \\ &+ n_0^{[g]} \Big(\ln(1 - \pi^{[g]}) + \ln(1 - q_{n\mathsf{a}|0}^{[g]}) \Big) + n_n^{[g]} \Big(\ln(\pi^{[g]}q_{n\mathsf{a}|1}^{[g]} + (1 - \pi^{[g]})q_{n\mathsf{a}|0}^{[g]}) \Big) \end{split}$$

gives set-valued estimator.

• Resulting bounds of $\hat{\pi}^{[g]}$ under no assumptions about $q_{na|y}^{[g]}$:

$$\hat{\underline{\pi}}^{[g]} = \frac{n_1^{[g]}}{n_{na}^{[g]} + n_1^{[g]} + n_0^{[g]}} \quad \text{and} \quad \overline{\hat{\pi}}^{[g]} = \frac{n_1^{[g]} + n_{na}^{[g]}}{n_{na}^{[g]} + n_1^{[g]} + n_0^{[g]}} \; .$$

Cautious Approach for Dealing with Nonresponse

(ISIPTA '15, Plass, Augustin, Cattaneo, Schollmeyer)

 Incorporate assumptions by missingness ratio (Nordheim, 1984)

$$R = q_{na|1}^{[g]}/q_{na|0}^{[g]}$$
 , with $R \in \mathcal{R} \subseteq \mathbb{R}_0^+$

- Specific values of R point-identify $\pi^{[g]}$
- Partial assumptions, expressed by $\mathcal{R} = [\underline{R}, \overline{R}]$, refine the result without any missingness assumptions $(R \in [0, 1])$
 - \Rightarrow Bounds for $\hat{\pi}^{[g],\mathcal{R}}$, $\hat{q}_{na|0}^{[g],\mathcal{R}}$ and $\hat{q}_{na|1}^{[g],\mathcal{R}}$ obtained under \underline{R} and \overline{R}

The synthetic estimator (without nonresponse)

 Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952, JASA)

$$\hat{\pi}_{HT,i} = \frac{1}{N_i} \sum_{i \in s_i} w_{ij} y_{ij}$$

The synthetic estimator (González, 1973, JASA)

$$\hat{\pi}_{SYN} \equiv \hat{\pi}_{SYN,i} = \frac{1}{N} \sum_{i=1}^{M} \sum_{i \in s_i} w_{ij} y_{ij} = \frac{1}{N} \sum_{i=1}^{M} N_i \cdot \hat{\pi}_{HT,i}$$

Cautious synthetic estimator

• No assumptions:

$$\hat{\pi}_{SYN} = \frac{1}{N} \sum_{i=1}^{M} \left(\sum_{j \in s_{i,obs}} w_{ij} y_{ij} + \sum_{j \in s_{i,mis}} w_{ij} \cdot y_{ij} \right)$$

$$\hat{\underline{\pi}}_{SYN} = \dots \left(\dots + \sum_{j \in s_{i,mis}} w_{ij} \cdot 0 \right), \ \overline{\hat{\pi}}_{SYN} = \dots \left(\dots + \sum_{j \in s_{i,mis}} w_{ij} \cdot 1 \right)$$

Cautious synthetic estimator

• No assumptions:

$$\hat{\pi}_{SYN} = \frac{1}{N} \sum_{i=1}^{M} \left(\sum_{j \in s_{i,obs}} w_{ij} y_{ij} + \sum_{j \in s_{i,mis}} w_{ij} \cdot y_{ij} \right)$$

$$\hat{\underline{\pi}}_{SYN} = \dots \left(\dots + \sum_{j \in s_{i,mis}} w_{ij} \cdot 0 \right), \ \hat{\overline{\pi}}_{SYN} = \dots \left(\dots + \sum_{j \in s_{i,mis}} w_{ij} \cdot 1 \right)$$

Partial assumptions:

$$\hat{\underline{\pi}}_{SYN}^{\mathcal{R}} = \frac{1}{N} \sum_{i=1}^{M} \left(\sum_{j \in s_{i,obs}} w_{ij} y_{ij} + \hat{\underline{q}}_{na|1i}^{\mathcal{R}} \cdot \hat{\underline{\pi}}_{i}^{\mathcal{R}} \cdot \sum_{j \in s_{i}} w_{ij} \right)$$

smallest est. weighted number of nonrespondents with $y_{ij} = 1$, under the assumption in focus.

Analogously, $\overline{\hat{\pi}}_{SYN}^{\mathcal{R}}$ is achieved by using $\overline{\hat{q}}_{na|1i}^{\mathcal{R}}$ and $\overline{\hat{\pi}}_{i}^{\mathcal{R}}$.

The LGREG estimator (without nonresponse)...

(Lehtonen and Veijanen, 1998, Surv. Methodol.)

• ... in its representation how we need it:

$$\hat{\pi}_{LGREG,i} = \sum_{g=1}^{V} \underbrace{\left(\sum_{j \in \mathbf{s}_{i}^{[g]}}^{\mathsf{HT-part}} w_{ij}y_{ij} + \hat{\pi}^{[g]} \left(N_{i}^{[g]} - \sum_{j \in \mathbf{s}_{i}^{[g]}}^{} w_{ij}\right)\right)/N_{i}}_{\mathsf{with}} \quad \hat{\pi}^{[g]} = \sum_{i=1}^{M} \sum_{j \in \mathbf{s}_{i}^{[g]}} \frac{y_{ij}}{n^{[g]}}$$

- The correction term accounts for under/overrepresentation of certain constellations of covariates in the sample
- In most cases: $w_{ij} = w_i, \forall j = 1, \dots, n_i, i = 1, \dots, M$.

No assumptions: Cautious LGREG estimator

Breaking the summation over all areas into a term for area i^* of interest and areas $i \neq i^*$ leads to

$$\sum_{g=1}^{v} \left(\left(\frac{1}{n^{[g]}} \sum_{\substack{i=1\\i\neq i^{*}}}^{M} \left(\sum_{j \in s_{i,obs}^{[g]}} y_{ij} + \sum_{j \in s_{i,mis}^{[g]}} y_{ij} \right) \right) \left(N_{i^{*}}^{[g]} - n_{i^{*}}^{[g]} w_{i^{*}} \right)$$

$$+ \frac{1}{n^{[g]}} \left(\sum_{j \in s_{i^{*},obs}^{[g]}} y_{i^{*}j} + \sum_{j \in s_{i^{*},mis}^{[g]}} y_{i^{*}j} \right) \left(N_{i^{*}}^{[g]} - w_{i^{*}} \left(n_{i^{*}}^{[g]} + n^{[g]} \right) \right) / N_{i^{*}}$$

No assumptions: Cautious LGREG estimator

Breaking the summation over all areas into a term for area i^* of interest and areas $i \neq i^*$ leads to

$$\begin{split} & \sum_{g=1}^{v} \left(\left(\frac{1}{n^{[g]}} \sum_{\substack{i=1\\i \neq i^*}}^{M} \left(\sum_{j \in s_{i,obs}^{[g]}} y_{ij} + \sum_{j \in s_{i,mis}^{[g]}} y_{ij} \right) \right) \left(N_{i^*}^{[g]} - n_{i^*}^{[g]} w_{i^*} \right) \\ & + \frac{1}{n^{[g]}} \left(\sum_{j \in s_{i^*,obs}^{[g]}} y_{i^*j} + \sum_{j \in s_{i^*,mis}^{[g]}} y_{i^*j} \right) \left(N_{i^*}^{[g]} - w_{i^*} (n_{i^*}^{[g]} + n^{[g]}) \right) \right) / N_{i^*} \end{split}$$

To determine $\hat{\underline{\pi}}_{LGREG,i^*}$:

$$N_{i^*}^{[g]} \geq w_{i^*} (n_{i^*}^{[g]} + n^{[g]}) \qquad N_{i^*}^{[g]} < w_{i^*} (n_{i^*}^{[g]} + n^{[g]})$$

$$N_{i^*}^{[g]} \geq n_{i^*}^{[g]} w_{i^*} \qquad y_{ij} = 0, \ \forall j \in s_{i,mis}, i \neq i^*$$

$$N_{i^*}^{[g]} < n_{i^*}^{[g]} w_{i^*} \qquad y_{ij} = \begin{cases} 1 & \forall j \in s_{i,mis}, i \neq i^* \\ 0 & \forall j \in s_{i,mis}, i = i^* \end{cases}$$

$$y_{ij} = \begin{cases} 0 & \forall j \in s_{i,mis}, i \neq i^* \\ 1 & \forall j \in s_{i,mis}, i = i^* \end{cases}$$

$$y_{ij} = 1, \ \forall j \in s_{i,mis}$$

Partial assumptions: Cautious LGREG estimator

- 1.) Regard $\hat{\pi}_{LGREG,j^*}$ as a combination of two estimators:
 - ⇒ a global one that borrows strength and
 - \Rightarrow a specific one associated to area i^* .
- 2.) Maximize the two log-likelihoods under R and R:
 - $\begin{array}{l} \bullet \;\; \ell(\pi^{[g],\mathcal{R}}, \;\; q_{na|0}^{[g],\mathcal{R}}, \;\; q_{na|1}^{[g],\mathcal{R}}) \quad \text{and} \\ \bullet \;\; \ell(\pi_{i*}^{[g],\mathcal{R}}, \;\; q_{na|0i*}^{[g],\mathcal{R}}, \;\; q_{na|1i*}^{[g],\mathcal{R}}) \end{array}$
- 3.) Include the estimators that minimize

$$\sum_{g=1}^{V} \left(\sum_{\substack{j \in s_{i^*,obs}^{[g]}, \mathcal{R} \\ j \in s_{i^*,obs}^{[g]}, bas}} w_{i^*} y_{i^*j} + \hat{q}_{na|1i^*}^{[g],\mathcal{R}} \sum_{\substack{j \in s_{i^*}^{[g]}, \mathcal{R} \\ j \in s_{i^*}^{[g]}}} w_{i^*j} + \hat{\pi}^{[g],\mathcal{R}} (N_{i^*}^{[g]} - n_{i^*}^{[g]} w_{i^*}) \right) / N_{i^*}$$

 \Rightarrow Since $\pi^{[g]}$ and $\pi^{[g]}$ are estimated distinctively, interrelation between them should be considered.

Some results (example)

• Intervals for the synthetic estimator

no assumption	$\mathcal{R} = [0,1]$
[0.167, 0.300]	[0.167, 0.193]

Intervals for the LGREG estimator

Federal state	no assumption	$\mathcal{R} = [0,1]$
BW	[0.129, 0.366]	[0.129, 0.210]
BY	[0.088, 0.233]	[0.088, 0.133]
HB	[0.077, 0.405]	[0.115, 0.193]
• • •		

Further work

- Optimization of one overall likelihood, instead of two, to obtain the cautious LGREG-estimator
- Comparison of the magnitude of both principally differing kinds of uncertainty induced by the two problems in focus