Reasoning in Description Logics with Typicalities and Probabilities of Exceptions

Gian Luca Pozzato

1Dipartimento di Informatica, Università degli Studi di Torino, Italy

ECSQARU 2017
DLs with Typicality and Probabilities

Outline

- Introduction to Description Logics
- DLs of Typicality
- Extensions with Probabilities
- Conclusions
DLs with Typicality and Probabilities

Outline

- Introduction to Description Logics
 - DLs of Typicality
 - Extensions with Probabilities
 - Conclusions
DLs with Typicality and Probabilities

Outline

- Introduction to Description Logics
- DLs of Typicality
 - Extensions with Probabilities
 - Conclusions
Outline

- Introduction to Description Logics
- DLs of Typicality
- Extensions with Probabilities
- Conclusions
DLs with Typicality and Probabilities

Outline

- Introduction to Description Logics
- DLs of Typicality
- Extensions with Probabilities
- Conclusions
Description Logics

Important formalisms of knowledge representation

Two key advantages:
- well-defined semantics based on first-order logic
- good trade-off between expressivity and complexity

at the base of languages for the semantic (e.g. OWL)

Knowledge bases

Two components:
- TBox = inclusion relations among concepts
- ABox = instances of concepts and roles = properties and relations among individuals
Description Logics

Important formalisms of knowledge representation

Two key advantages:
- well-defined semantics based on first-order logic
- good trade-off between expressivity and complexity

at the base of languages for the semantic (e.g. OWL)

Knowledge bases

Two components:
- TBox = inclusion relations among concepts
 - Platypus \sqsubseteq Mammal
- ABox = instances of concepts and roles = properties and relations among individuals
 - Platypus(perry)
Description Logics

Important formalisms of knowledge representation

Two key advantages:

- well-defined semantics based on first-order logic
- good trade-off between expressivity and complexity

at the base of languages for the semantic (e.g. OWL)

Knowledge bases

Two components:

- TBox: inclusion relations among concepts
 - Platypus ⊆ Mammal
- ABox: instances of concepts and roles = properties and relations among individuals
 - Platypus(perry)
Description Logics

- Important formalisms of knowledge representation
- Two key advantages:
 - well-defined semantics based on first-order logic
 - good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

Knowledge bases

- Two components:
 - TBox = inclusion relations among concepts
 - Platypus ⊆ Mammal
 - ABox = instances of concepts and roles = properties and relations among individuals
 - Platypus(perry)
Introduction

- TBox \Rightarrow taxonomy of concepts
- need of representing prototypical properties and of reasoning about defeasible inheritance
- to handle defeasible inheritance needs the integration of some kind of nonmonotonic reasoning mechanism
 - DLs + MKNF
 - DLs + circumscription
 - DLs + default
- However, all these methods present some difficulties ...
Outline

DLs with typicality

- Non-monotonic extensions of Description Logics for reasoning about prototypical properties and inheritance with exceptions
 - Basic idea: to extend DLs with a typicality operator T
 - $T(C)$ singles out the “most normal” instances of the concept C
 - semantics of T defined by a set of postulates that are a restatement of Lehmann-Magidor axioms of rational logic R

Basic notions

- A KB comprises assertions $T(C) \subseteq D$
- $T(Student) \subseteq FacebookUsers$ means “normally, students use Facebook”
- T is nonmonotonic
 - $C \subseteq D$ does not imply $T(C) \subseteq T(D)$
DLs with typicality

- Non-monotonic extensions of Description Logics for reasoning about prototypical properties and inheritance with exceptions
 - Basic idea: to extend DLs with a typicality operator T
 - $T(C)$ singles out the “most normal” instances of the concept C
 - semantics of T defined by a set of postulates that are a restatement of Lehmann-Magidor axioms of rational logic R

Basic notions

- A KB comprises assertions $T(C) \subseteq D$
- $T(\text{Student}) \subseteq \text{FacebookUsers}$ means “normally, students use Facebook”
- T is nonmonotonic
 - $C \subseteq D$ does not imply $T(C) \subseteq T(D)$
The logic $\text{ALC} + \mathbf{T}_{\text{min}}$

Example

$\mathbf{T}(\text{Platypus}) \subseteq \neg \exists x \text{wears.Hat}$

$\mathbf{T}(\text{Platypus} \cap \text{SecretAgent}) \subseteq \exists x \text{wears.Hat}$

Reasoning

- ABox:
 - Platypus
 - Platypus \cap SecretAgent

- Expected conclusions:
 - wears.Hat (for perry)
The logic $\text{ALC} + T_{\text{min}}$

Example

\[
T(\text{Platypus}) \subseteq \neg \exists \text{wears.Hat}
\]

\[
T(\text{Platypus} \cap \text{SecretAgent}) \subseteq \exists \text{wears.Hat}
\]

Reasoning

- **ABox:**
 - Platypus(perry)

- Expected conclusions:
 - $\neg \exists \text{wears.Hat(perry)}$
The logic $\mathcal{ALC} + T_{\text{min}}$

Example

\[
\begin{align*}
\mathbf{T}(\text{Platypus}) & \subseteq \neg \exists \text{wears.} \text{Hat} \\
\mathbf{T}(\text{Platypus} \cap \text{SecretAgent}) & \subseteq \exists \text{wears.} \text{Hat}
\end{align*}
\]

Reasoning
- ABox:
 - $\text{Platypus}(\text{perry})$
- Expected conclusions:
 - $\neg \exists \text{wears.} \text{Hat}(\text{perry})$
The logic $ALC + T_{\text{min}}$

Example

\[
\begin{align*}
T(Platypus) & \subseteq \neg \exists w \text{wears.Hat} \\
T(Platypus \cap SecretAgent) & \subseteq \exists w \text{wears.Hat}
\end{align*}
\]

Reasoning

- **ABox:**

 - $Platypus(perry), SecretAgent(perry)$

- **Expected conclusions:**

 - $\exists w \text{wears.Hat(perry)}$
The logic $ALC + T_{\text{min}}$

Example

$T(\text{Platypus}) \subseteq \neg \exists \text{wears.Hat}$

$T(\text{Platypus} \cap \text{SecretAgent}) \subseteq \exists \text{wears.Hat}$

Reasoning

- ABox:
 - $\text{Platypus}(\text{perry}), \text{SecretAgent}(\text{perry})$
- Expected conclusions:
 - $\exists \text{wears.Hat}(\text{perry})$
The logic $\mathcal{ALC} + T$

Semantics

$\mathcal{M} = \langle \Delta^\mathcal{I}, <, .^\mathcal{I} \rangle$

- additional ingredient: preference relation among domain elements
- $<$ is an irreflexive, transitive, modular and well-founded relation over $\Delta^\mathcal{I}$:
 - for all $S \subseteq \Delta^\mathcal{I}$, for all $x \in S$, either $x \in Min_<(S)$ or $\exists y \in Min_<(S)$ such that $y < x$
 - $Min_<(S) = \{u : u \in S \text{ and } \not\exists z \in S \text{ s.t. } z < u\}$
- Semantics of the T operator: $(T(C))^\mathcal{I} = Min_<(C^\mathcal{I})$
Weakness of monotonic semantics

Logic $\mathcal{ALC} + T$

- The operator T is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

Example

- In the KB of the previous slides:
 - if $\text{Platypus}(perry) \in \text{ABox}$, we are not able to:
 - assume that $T(\text{Platypus})(perry)$
 - infer that $\neg \exists w \text{wears}\ Hat(perry)$
Weakness of monotonic semantics

Logic $\mathcal{ALC} + T$
- The operator T is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

Example
- In the KB of the previous slides:
 - If $Platypus(perry) \in ABox$, we are not able to:
 - Assume that $T(Platypus)(perry)$
 - Infer that $\neg \exists \text{wears.Hat}(perry)$
Weakness of monotonic semantics

Logic \(\mathcal{ALC} + T \)
- The operator \(T \) is nonmonotonic, but...
- The logic is monotonic
 - If \(KB \models F \), then \(KB' \models F \) for all \(KB' \supseteq KB \)

Example
- In the KB of the previous slides:
 - If \(\text{Platypus}(perry) \in \text{ABox} \), we are not able to:
 - Assume that \(T(\text{Platypus})(perry) \)
 - Infer that \(\neg \exists \text{wears.} \text{Hat}(perry) \)
The nonmonotonic logic $\mathcal{ALC} + T_{\text{min}}$

Rational closure

- Preference relation among models of a KB
 - $\mathcal{M}_1 < \mathcal{M}_2$ if \mathcal{M}_1 contains less exceptional (not minimal) elements
 - \mathcal{M} minimal model of KB if there is no \mathcal{M}' model of KB such that $\mathcal{M}' < \mathcal{M}$
- Minimal entailment
 - $\mathcal{KB} \models_{\text{min}} F$ if F holds in all minimal models of KB
- Nonmonotonic logic
 - $\mathcal{KB} \models_{\text{min}} F$ does not imply $\mathcal{KB}' \models_{\text{min}} F$ with $\mathcal{KB}' \supset \mathcal{KB}$
- Corresponds to a notion of rational closure of KB
The nonmonotonic logic $\mathcal{ALC} + T_{\text{min}}$

Rational closure

- Preference relation among models of a KB
 - $\mathcal{M}_1 < \mathcal{M}_2$ if \mathcal{M}_1 contains less exceptional (not minimal) elements
 - \mathcal{M} minimal model of KB if there is no $\mathcal{M'}$ model of KB such that $\mathcal{M'} < \mathcal{M}$
- Minimal entailment
 - $\mathcal{KB} \models_{\text{min}} F$ if F holds in all minimal models of KB
- Nonmonotonic logic
 - $\mathcal{KB} \models_{\text{min}} F$ does not imply $\mathcal{KB'} \models_{\text{min}} F$ with $\mathcal{KB'} \supset \mathcal{KB}$
- Corresponds to a notion of rational closure of KB
The nonmonotonic logic $\mathcal{ALC} + T_{\text{min}}$

Rational closure

- Preference relation among models of a KB
 - $\mathcal{M}_1 < \mathcal{M}_2$ if \mathcal{M}_1 contains less exceptional (not minimal) elements
 - \mathcal{M} minimal model of KB if there is no \mathcal{M}' model of KB such that $\mathcal{M}' < \mathcal{M}$

- Minimal entailment
 - $\text{KB} \models_{\text{min}} F$ if F holds in all *minimal* models of KB

- Nonmonotonic logic
 - $\text{KB} \models_{\text{min}} F$ does not imply $\text{KB}' \models_{\text{min}} F$ with $\text{KB}' \supset \text{KB}$

- Corresponds to a notion of rational closure of KB
Introduction

- \(\mathcal{ALC} + T^p\): extension of \(\mathcal{ALC}\) by typicality inclusions equipped by *probabilities of exceptionality*
- \(T(C) \subseteq_p D\), where \(p \in (0, 1)\)
- Intuitive meaning: typical Cs are also Ds with a probability \(p\) or normally, Cs are Ds and the probability of having exceptional Cs not being Ds is \(1 - p\)

Example

\(T(Student) \subseteq_{0.3} SportLover\)

\(T(Student) \subseteq_{0.9} SocialNetworkUser\)

- Sport lovers and social network users are both typical properties of students
- Probability of not having exceptions is 30% and 90%, respectively
DLs + T and probabilities

Probabilistic DLs

- $\mathcal{ALC} + T^P$ different from DLs with DISPONTE semantics
- Probabilistic axioms $p :: C \sqsubseteq D$ used to capture uncertainty
 - Cs are Ds with probability p
- In $\mathcal{ALC} + T^P$ typical properties to concepts and to reason about probabilities of exceptions to those typicalities
DLs + T and probabilities

Basic idea

- extensions of an ABox containing only some of the “plausible” typicality assertions of the rational closure of KB
 - each extension represents a scenario having a specific probability
 - probability distribution among scenarios
 - nonmonotonic entailment restricted to extensions whose probabilities belong to a given and fixed range
 - reason about scenarios that are not necessarily the most probable
DLs + T and probabilities

Extensions of ABox

- typicality assumptions $T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)$ inferred from $\mathcal{ALC} + T_{\text{min}}$
- extensions of ABox obtained by choosing *some* typicality assumptions
 - $\tilde{A}_1 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\tilde{A}_2 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\tilde{A}_3 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\tilde{A}_4 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - \ldots
- reasoning in the *monotonic* $\mathcal{ALC} + T$ considering TBox and ABox extended with chosen assumptions
DLs + T and probabilities

Extensions of ABox

- typicality assumptions $T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)$ inferred from $ALC + T_{min}$
- extensions of ABox obtained by choosing some typicality assumptions
 - $\tilde{A}_1 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\tilde{A}_2 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\tilde{A}_3 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\tilde{A}_4 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - \ldots

- reasoning in the monotonic $ALC + T$ considering TBox and ABox extended with chosen assumptions
DLs + T and probabilities

Extensions of ABox

- typicality assumptions \(T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \) inferred from \(ALC + T_{\text{min}} \)
- extensions of ABox obtained by choosing some typicality assumptions
 - \(\widetilde{A}_1 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \} \)
 - \(A_2 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \} \)
 - \(A_3 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \} \)
 - \(\widetilde{A}_4 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \} \)
 - \(\ldots \)
- reasoning in the monotonic \(ALC + T \) considering TBox and ABox extended with chosen assumptions
DLs + T and probabilities

Extensions of ABox

- typicality assumptions $T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)$ inferred from $\mathcal{ALC} + T_{min}$
- extensions of ABox obtained by choosing some typicality assumptions
 - $\tilde{A}_1 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - $\tilde{A}_2 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - $\tilde{A}_3 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - $\tilde{A}_4 = \{T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)\}$
 - \ldots

- reasoning in the monotonic $\mathcal{ALC} + T$ considering TBox and ABox extended with chosen assumptions
Extensions of ABox

- typicality assumptions $T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n)$ inferred from $\mathcal{ALC} + T_{min}$
- extensions of ABox obtained by choosing *some* typicality assumptions
 - $\tilde{A}_1 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\tilde{A}_2 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\tilde{A}_3 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - $\tilde{A}_4 = \{ T(C_1)(a_1), T(C_2)(a_2), \ldots, T(C_n)(a_n) \}$
 - \ldots

- reasoning in the *monotonic* $\mathcal{ALC} + T$ considering TBox and ABox extended with chosen assumptions
Extensions of ABox

- typicality assumptions $\mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n)$ inferred from $\mathcal{ALC} + \mathbf{T}_{\text{min}}$
- extensions of ABox obtained by choosing some typicality assumptions
 - $\widetilde{\mathcal{A}}_1 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_2 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\widetilde{\mathcal{A}}_3 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - $\mathcal{A}_4 = \{ \mathbf{T}(C_1)(a_1), \mathbf{T}(C_2)(a_2), \ldots, \mathbf{T}(C_n)(a_n) \}$
 - ...

- reasoning in the \textit{monotonic $\mathcal{ALC} + \mathbf{T}$} considering TBox and ABox extended with chosen assumptions
Extensions of ABox and probabilities

\[T(C) \sqsubseteq 0.3 \quad D \]
\[T(C) \sqsubseteq 0.7 \quad E \]
\[T(F) \sqsubseteq 0.8 \quad G \]
\[T(C) \sqsubseteq 0.5 \quad H \]

\[T(C)(a) \quad T(F)(a) \quad T(C)(b) \]
Extensions of ABox and probabilities

\[T(C) \sqsubseteq_{0.3} D \]
\[T(C) \sqsubseteq_{0.7} E \]
\[T(F) \sqsubseteq_{0.8} G \]
\[T(C) \sqsubseteq_{0.5} H \]
Extensions of ABox and probabilities

\[T(C) \sqsubseteq_{0.3} D \]
\[T(C) \sqsubseteq_{0.7} E \]
\[T(F) \sqsubseteq_{0.8} G \]
\[T(C) \sqsubseteq_{0.5} H \]

\[0.3 \times 0.7 \times 0.5 \]
Extensions of ABox and probabilities

\[T(C) \sqsubseteq_{0.3} D \quad T'(a) \quad T(F)(a) \quad T(C)(b) \]
\[T(C) \sqsubseteq_{0.7} E \quad 0.105 \]
\[T(F) \sqsubseteq_{0.8} G \quad 0.3 \times 0.7 \times 0.5 \]
\[T(C) \sqsubseteq_{0.5} H \]
Extensions of ABox and probabilities

\[T(C) \sqsubseteq 0.3 \ D \]
\[T(C) \sqsubseteq 0.7 \ E \]
\[T(F) \sqsubseteq 0.8 \ G \]
\[T(C) \sqsubseteq 0.5 \ H \]

\[T(C)(a) \quad T(F)(a) \quad T(C)(b) \]

\[0.3 \times 0.7 \times 0.5 \]
Extensions of ABox and probabilities

\[
\begin{align*}
T(C) \subseteq_{0.3} D \\
T(C) \subseteq_{0.7} E \\
T(F) \subseteq_{0.8} G \\
T(C) \subseteq_{0.5} H
\end{align*}
\]
Extensions of ABox and probabilities

\[T(C) \sqsubseteq 0.3 \quad D \]
\[T(C) \sqsubseteq 0.7 \quad E \]
\[T(F) \sqsubseteq 0.8 \quad G \]
\[T(C) \sqsubseteq 0.5 \quad H \]

\[T(C)(a) \quad T(F)(a) \quad T(C)(b) \]

\[0.3 \times 0.7 \times 0.5 \]

\[0.105 \quad 0.3 \]

\[0.8 \]
Extensions of ABox and probabilities

\[T(C) \sqsubseteq 0.3 \quad D \]
\[T(C) \sqsubseteq 0.7 \quad E \]
\[T(F) \sqsubseteq 0.8 \quad G \]
\[T(C) \sqsubseteq 0.5 \quad H \]

\[
\begin{align*}
T(C)(a) & \quad T(F)(a) \quad T(C)(b) \\
0.105 & \quad 0.8 & \quad 0.105 \\
0.3 \times 0.7 \times 0.5 &
\end{align*}
\]
Extensions of ABox and probabilities

<table>
<thead>
<tr>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{T}(C)$ $\sqsubseteq_{0.3} D$</td>
<td>$\mathbf{T}(C)(a)$</td>
<td>$\mathbf{T}(F)(a)$</td>
<td>$\mathbf{T}(C)(b)$</td>
</tr>
<tr>
<td>$\mathbf{T}(C)$ $\sqsubseteq_{0.7} E$</td>
<td>0.105</td>
<td>0.8</td>
<td>0.105</td>
</tr>
<tr>
<td>$\mathbf{T}(F)$ $\sqsubseteq_{0.8} G$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbf{T}(C)$ $\sqsubseteq_{0.5} H$</td>
<td>$0.3 \times 0.7 \times 0.5$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extensions of ABox and probabilities

\[T(C) \sqsubseteq 0.3 \quad D \]
\[T(C) \sqsubseteq 0.7 \quad E \]
\[T(F) \sqsubseteq 0.8 \quad G \]
\[T(C) \sqsubseteq 0.5 \quad H \]

\[0.105 \quad 0.8 \quad 0.105 \]

\[0.3 \times 0.7 \times 0.5 \]

\[[0.105, 0.8, 0.105] \quad \widetilde{A}_1 \]

\[T(C)(a) \quad T(F)(a) \quad T(C)(b) \]
Extensions of ABox and probabilities

\[
\begin{align*}
T(C) & \subseteq_{0.3} D \\
T(C) & \subseteq_{0.7} E \\
T(F) & \subseteq_{0.8} G \\
T(C) & \subseteq_{0.5} H \\
\end{align*}
\]

\[
\begin{align*}
T(C)(a) & \quad T(F)(a) & \quad T(C)(b) \\
0.105 & \quad 0.8 & \quad 0.105 \\
0.3 \times 0.7 \times 0.5 & \quad & \\
\end{align*}
\]

\[
\begin{align*}
[0.105, 0.8, 0.105] & \quad \tilde{A}_1 \\
[0.105, 0, 0] & \quad \tilde{A}_2 \\
\end{align*}
\]
Extensions of ABox and probabilities

\[
\begin{align*}
T(C) & \subseteq 0.3 \; D \\
T(C) & \subseteq 0.7 \; E \\
T(F) & \subseteq 0.8 \; G \\
T(C) & \subseteq 0.5 \; H
\end{align*}
\]

\[
\begin{array}{cccc}
T(C)(a) & T(F)(a) & T(C)(b) \\
0.105 & 0.8 & 0.105 \\
0.3 \times 0.7 \times 0.5 \\
\end{array}
\]
Extensions of ABox and probabilities

<table>
<thead>
<tr>
<th></th>
<th>$T(C)$</th>
<th>$T(C)$</th>
<th>$T(F)$</th>
<th>$T(C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>0.105</td>
<td>0.8</td>
<td>0.105</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>$0.3 \times 0.7 \times 0.5$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $[0.105, 0.8, 0.105]$: \bar{A}_1
- $[0.105, 0, 0]$: \bar{A}_2
- $[0, 0.8, 0.105]$: \bar{A}_3
- $[0, 0, 0]$: \bar{A}_8
- $[0, 0, 0]$: \bar{A}_8
Extensions of ABox and Probabilities

<table>
<thead>
<tr>
<th>Typicality</th>
<th>ABox Expansion</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(C) \supseteq 0.3 , D$</td>
<td>$T(C)(a) \quad T(F)(a) \quad T(C)(b)$</td>
<td>$\mathbb{P}_{\mathcal{A}_1} = 0.105 \times 0.8 \times 0.105$</td>
</tr>
<tr>
<td>$T(C) \supseteq 0.7 , E$</td>
<td>$T(C)(a) \quad T(F)(a) \quad T(C)(b)$</td>
<td>$\mathbb{P}_{\mathcal{A}_2} = 0.105 \times (1 - 0.8) \times (1 - 0.105)$</td>
</tr>
<tr>
<td>$T(F) \supseteq 0.8 , G$</td>
<td>$0.105 \quad 0.8 \quad 0.105$</td>
<td>$\mathbb{P}_{\mathcal{A}_3} = (1 - 0.105) \times 0.8 \times 0.105$</td>
</tr>
<tr>
<td>$T(C) \supseteq 0.5 , H$</td>
<td>$0.3 \times 0.7 \times 0.5$</td>
<td>$\mathbb{P}_{\mathcal{A}_8} = (1 - 0.105) \times (1 - 0.8) \times (1 - 0.105)$</td>
</tr>
</tbody>
</table>

- \mathcal{A}_1: $[0.105, 0.8, 0.105]$
- \mathcal{A}_2: $[0.105, 0, 0]$
- \mathcal{A}_3: $[0, 0.8, 0.105]$
- \mathcal{A}_8: $[0, 0, 0]$

Gian Luca Pozzato

Reasoning in DLs with Typicalities and Probabilities of Exceptions
Entailment

- Given $\text{KB}=(T, A)$ and $p, q \in (0, 1]$.
- $\mathcal{E} = \{\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_k\}$ set of extensions of A whose probabilities are $p \leq \mathbb{P}_1 \leq q, p \leq \mathbb{P}_2 \leq q, \ldots, p \leq \mathbb{P}_k \leq q$.
- $\mathcal{T}' = \{T(C) \sqsubseteq D \mid T(C) \sqsubseteq r D \in \mathcal{T}\} \cup \{C \sqsubseteq D \in \mathcal{T}\}$.
- $\mathcal{KB} \models^{\langle p, q \rangle}_{\text{ALC}+\mathbb{P}} F$.
 - if F is $C \sqsubseteq D$ or $T(C) \sqsubseteq D$, if $(\mathcal{T}', A) \models^{\text{ALC}+\text{min}}_{\mathbb{P}} F$.
 - if F is $C(a)$, if $(\mathcal{T}', A \cup \tilde{A}_i) \models^{\text{ALC}+\mathbb{P}} F$ for all $\tilde{A}_i \in \mathcal{E}$.

- Probability of F: $\mathbb{P}(F) = \sum_{i=1}^{k} \mathbb{P}_i$.

Gian Luca Pozzato

Reasoning in DLs with Typicalities and Probabilities of Exceptions
DLs + T and probabilities

Entailment

- **Given** $\text{KB} = (\mathcal{T}, \mathcal{A})$ and $p, q \in (0, 1]$
- $\mathcal{E} = \{\widetilde{A}_1, \widetilde{A}_2, \ldots, \widetilde{A}_k\}$ set of extensions of \mathcal{A} whose probabilities are
 $p \leq P_1 \leq q, p \leq P_2 \leq q, \ldots, p \leq P_k \leq q$
- $\mathcal{T}' = \{\mathbf{T}(C) \sqsubseteq D | \mathbf{T}(C) \sqsubseteq r D \in \mathcal{T}\} \cup \{C \sqsubseteq D \in \mathcal{T}\}$
- $\text{KB} \models^{(p,q)}_{\text{ALC+TP}} F$
 - if F is $C \sqsubseteq D$ or $\mathbf{T}(C) \sqsubseteq D$, if $(\mathcal{T}', \mathcal{A}) \models^{\text{ALC+T}_{\text{min}}} F$
 - if F is $C(a)$, if $(\mathcal{T}', \mathcal{A} \cup \widetilde{A}_i) \models^{\text{ALC+T}} F$ for all $\widetilde{A}_i \in \mathcal{E}$
- probability of F: $\mathbb{P}(F) = \sum_{i=1}^{k} P_i$
DLs + T and probabilities

Entailment

- Given $KB=(T, A)$ and $p, q \in (0, 1]$
- $E = \{\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_k\}$ set of extensions of A whose probabilities are $p \leq P_1 \leq q, p \leq P_2 \leq q, \ldots, p \leq P_k \leq q$
- $T' = \{T(C) \subseteq D | T(C) \subseteq r D \in T\} \cup \{C \subseteq D \in T\}$
- $KB \models^{\langle p, q \rangle}_{\text{ALC+TP}} F$
 - if F is $C \subseteq D$ or $T(C) \subseteq D$, if $(T', A) \models_{\text{ALC+T}_{\text{min}}} F$
 - if F is $C(a)$, if $(T', A \cup \tilde{A}_i) \models_{\text{ALC+T}} F$ for all $\tilde{A}_i \in E$
- Probability of F: $P(F) = \sum_{i=1}^{k} P_i$
Entailment

- Given $KB = (T, A)$ and $p, q \in (0, 1]$
- $E = \{\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_k\}$ set of extensions of A whose probabilities are $p \leq P_1 \leq q, p \leq P_2 \leq q, \ldots, p \leq P_k \leq q$
- $T' = \{T(C) \sqsubseteq D \mid T(C) \sqsubseteq r D \in T\} \cup \{C \sqsubseteq D \in T\}$
- $KB \models^{\langle p, q \rangle}_{ALC+T_P} F$
 - if F is $C \sqsubseteq D$ or $T(C) \sqsubseteq D$, if $(T', A) \models_{ALC+T_{min}} F$
 - if F is $C(a)$, if $(T', A \cup \tilde{A}_i) \models_{ALC+T} F$ for all $\tilde{A}_i \in E$
- Probability of F: $P(F) = \sum_{i=1}^{k} P_i$
Entailment

- Given \(KB = (T, A) \) and \(p, q \in (0, 1] \)
- \(E = \{ \widetilde{A}_1, \widetilde{A}_2, \ldots, \widetilde{A}_k \} \) set of extensions of \(A \) whose probabilities are \(p \leq P_1 \leq q, p \leq P_2 \leq q, \ldots, p \leq P_k \leq q \)
- \(T' = \{ T(C) \sqsubseteq D \mid T(C) \sqsubseteq_r D \in T \} \cup \{ C \sqsubseteq D \in T \} \)
- \(KB \models_{\mathcal{ALC}+T_P} F \)
 - if \(F \) is \(C \sqsubseteq D \) or \(T(C) \sqsubseteq D \), if \((T', A) \models_{\mathcal{ALC}+T_{min}} F \)
 - if \(F \) is \(C(a) \), if \((T', A \cup \widetilde{A}_i) \models_{\mathcal{ALC}+T} F \) for all \(\widetilde{A}_i \in E \)

- Probability of \(F \): \(P(F) = \sum_{i=1}^{k} P_i \)
Description Logics

Description Logics of Typicality

DLs with Typicality and Probabilities

Conclusions

Typicalities and Probabilities

DLs + T and probabilities

TBox

\[
\text{AtypicalDepressed} \sqsubseteq \text{Depressed}
\]

\[
\mathcal{T}(\text{Depressed}) \sqsubseteq 0.85 \neg \exists \text{Symptom}.\text{MoodReactivity}
\]

\[
\mathcal{T}(\text{AtypicalDepressed}) \sqsubseteq 0.6 \exists \text{Symptom}.\text{MoodReactivity}
\]

\[
\mathcal{T}(\text{ProstateCancerPatient}) \sqsubseteq 0.5 \exists \text{Symptom}.\text{MoodReactivity}
\]

\[
\mathcal{T}(\text{ProstateCancerPatient}) \sqsubseteq 0.8 \exists \text{Symptom}.\text{Nocturia}
\]

Inferences

- \(\mathcal{T}(\text{Depressed} \land \text{Tall}) \sqsubseteq \neg \exists \text{Symptom}.\text{MoodReactivity} \) is entailed in \(\mathcal{ALC} + \mathcal{T}^P \)

- if \(\mathcal{A} = \{ \text{ProstateCancerPatient}(\text{jim}), \text{AtypicalDepressed}(\text{jim}) \} \):
 - \(\exists \text{Symptom}.\text{MoodReactivity}(\text{jim}) \) has probability 76%
DLs + T and probabilities

TBox

\[\text{AtypicalDepressed} \sqsubseteq \text{Depressed} \]

\[\text{T(Depressed)} \sqsubseteq 0.85 \neg \exists \text{Symptom.MoodReactivity} \]

\[\text{T(AtypicalDepressed)} \sqsubseteq 0.6 \exists \text{Symptom.MoodReactivity} \]

\[\text{T(ProstateCancerPatient)} \sqsubseteq 0.5 \exists \text{Symptom.MoodReactivity} \]

\[\text{T(ProstateCancerPatient)} \sqsubseteq 0.8 \exists \text{Symptom.Nocturia} \]

Inferences

1. \[\text{T(Depressed} \sqcap \text{Tall)} \sqsubseteq \neg \exists \text{Symptom.MoodReactivity} \] is entailed in \(\mathcal{ALC} + T^P \)

2. if \(\mathcal{A} = \{ \text{ProstateCancerPatient(jim), AtypicalDepressed(jim)} \} \):
 - \(\exists \text{Symptom.MoodReactivity(jim)} \) has probability 76%
Reasoning Procedure

1: procedure ENTAILMENT((\mathcal{T}, \mathcal{A}), \mathcal{T}', F, \text{Tip}, p, q)
2: \text{Tip}_\mathcal{A} \leftarrow \emptyset \quad \triangleright \text{build the set } \mathcal{S} \text{ of possible assumptions}
3: \text{for each } C \in \text{Tip}_\mathcal{A} \text{ do}
4: \quad \text{for each individual } a \in \mathcal{A} \text{ do} \quad \triangleright \text{Reasoning in } ALC + T^{RaCl}_R
5: \quad \text{if } (\mathcal{T}', \mathcal{A}) \models_{ALC+T^{RaCl}_R} T(C)(a) \text{ then } \text{Tip}_\mathcal{A} \leftarrow \text{Tip}_\mathcal{A} \cup \{T(C)(a)\}
6: \quad \mathcal{P}_\mathcal{A} \leftarrow \emptyset \quad \triangleright \text{compute the probabilities of Definition 2 given } \mathcal{T} \text{ and } \text{Tip}_\mathcal{A}
7: \text{for each } C \in \text{Tip}_\mathcal{A} \text{ do}
8: \quad \Pi_C \leftarrow 1
9: \quad \text{for each } T(C) \sqsubseteq_p D \in \mathcal{T} \text{ do } \Pi_C \leftarrow \Pi_C \times p
10: \quad \mathcal{P}_\mathcal{A} \leftarrow \mathcal{P}_\mathcal{A} \cup \Pi_C
11: \mathcal{S} \leftarrow \text{build strings of possible assumptions as in Definition 3 given } \text{Tip}_\mathcal{A} \text{ and } \mathcal{P}_\mathcal{A}
12: \mathcal{E} \leftarrow \emptyset \quad \triangleright \text{build extensions of } \mathcal{A}
13: \text{for each } s_i \in \mathcal{S} \text{ do}
14: \quad \text{build the extension } \widehat{\mathcal{A}}_i \text{ corresponding to } s_i \text{ and compute } P_{\widehat{\mathcal{A}}_i} \text{ as in Definition 4}
15: \quad \text{if } p \leq P_{\widehat{\mathcal{A}}_i} \leq q \text{ then } \mathcal{E} \leftarrow \mathcal{E} \cup \widehat{\mathcal{A}}_i \quad \triangleright \text{select extensions with probability in } \langle p, q \rangle
16: \text{for each } \widehat{\mathcal{A}}_i \in \mathcal{E} \text{ do}
17: \quad \text{if } (\mathcal{T}', \mathcal{A} \cup \widehat{\mathcal{A}}_i) \not\models_{ALC+T^P_R} F \text{ then return } KB \not\models_{ALC+T^P_R} F \quad \triangleright \text{query entailment in } ALC + T^P_R
18: \text{return } KB \models_{ALC+T^P_R} F \quad \triangleright F \text{ is entailed in all extensions}
DLs + T and probabilities

Results

- entailment restricted to extensions with a fixed probability / range of probabilities
- essentially inexpensive
 - entailment in in \text{ExpTime} as in the underlying ALC
Beyond $\mathcal{ALC} + T^p$

Future works

- Combination of DLs with DISPONTE semantics with probability of exceptions
- Reasoning in real domains:
 - which range of probabilities?
- Implementation
- Extension to other DLs
References

Any question?

Perry The Platypus (aka Agent P)

Agent P (aka Perry The Platypus)