

Ensemble Enhanced Evidential *k*-NN classifier through random subspaces.

Asma Trabelsi^{1,2}, Zied Elouedi¹, Eric Lefevre²

¹ Université de Tunis, Institut Supérieur de Gestion de Tunis, Larodec
²Université d'Artois, Laboratoire de Génie Informatique et d'Automatique de l'Artois (LGI2A)

UNIVERSITÉ D'ARTOIS

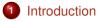
(中) (종) (종) (종) (종)

11 July 2017

- 2 Evidence Theory
- 3 Enhanced Evidential k Nearest Neighbors classifier
- Ensemble Enhanced Evidential k Nearest Neighbors classifier
- 5 Experimentation
- 6 Conclusions & Future works

Evidence Theory Enhanced Evidential k Nearest Neighbors classifier Ensemble Enhanced Evidential k Nearest Neighbors classifier Experimentation Conclusions & Future works

Outline



- 2 Evidence Theory
- 3 Enhanced Evidential k Nearest Neighbors classifier
- Ensemble Enhanced Evidential k Nearest Neighbors classifier
- 5 Experimentation
- 6 Conclusions & Future works

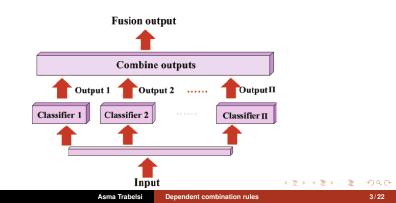
< < >> < <</>

→ ∃ → < ∃</p>

Evidence Theory Enhanced Evidential k Nearest Neighbors classifier Ensemble Enhanced Evidential k Nearest Neighbors classifier Experimentation Conclusions & Future works

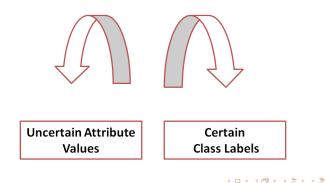
Introduction

Classifier fusion is regarded as an effective solution for solving several real world classification problems.



Evidence Theory Enhanced Evidential k Nearest Neighbors classifier Ensemble Enhanced Evidential k Nearest Neighbors classifier Experimentation Conclusions & Future works

Real World Application Data



Evidence Theory Enhanced Evidential k Nearest Neighbors classifier Ensemble Enhanced Evidential k Nearest Neighbors classifier Experimentation Conclusions & Future works

How to deal with uncertain attribute values for solving pattern recognition problems

Dependent combination rules

Evidence Theory Enhanced Evidential k Nearest Neighbors classifier Ensemble Enhanced Evidential k Nearest Neighbors classifier Experimentation Conclusions & Future works

Enhanced Evidential k-Nearest Neighbors

Evidence Theory Enhanced Evidential k Nearest Neighbors classifier Ensemble Enhanced Evidential k Nearest Neighbors classifier Experimentation Conclusions & Future works

Ensemble Enhanced Evidential *k*-Nearest Neighbors

Introduction

- 2 Evidence Theory
- 3 Enhanced Evidential k Nearest Neighbors classifier
- Ensemble Enhanced Evidential k Nearest Neighbors classifier
- 5 Experimentation
- 6 Conclusions & Future works

→ ∃ → < ∃</p>

< A >

Evidence Theory

Enhanced Evidential & Nearest Neighbors classifier Ensemble Enhanced Evidential & Nearest Neighbors classifier Experimentation Conclusions & Future works

Evidence theory (1/2)

Asma Trabelsi Dependent combination rules

æ

イロト イボト イヨト イヨト

Evidence Theory

Enhanced Evidential k Nearest Neighbors classifier Ensemble Enhanced Evidential k Nearest Neighbors classifier Experimentation Conclusions & Future works

Evidence theory (1/2)

Frame of discernment

$$\Theta = \{\theta_1, \theta_2, \dots, \theta_N\}$$

$$2^{\Theta} = \{A, A \subseteq \Theta\}$$

э

<ロト < 同ト < 回ト < ヨト

Evidence theory (1/2)

Frame of discernment	Basic Belief Assignment (bba)
$\Theta = \{\theta_1, \theta_2, \dots, \theta_N\}$	$m: 2^{\Theta} ightarrow [0,1]$
$2^{\Theta} = \{A, A \subseteq \Theta\}$	$\sum_{A\subseteq \Theta} m(A) = 1$

Introduction

э

イロト イボト イヨト イヨト

Evidence theory (1/2)

Frame of discernment	Basic Belief Assignment (bba)
$\Theta = \{\theta_1, \theta_2, \dots, \theta_N\}$	$m: 2^{\Theta} ightarrow [0,1]$
$2^{\Theta} = \{A, A \subseteq \Theta\}$	$\sum_{A\subseteq\Theta}m(A)=1$

Introduction

Combination rule

The Dempster rule allows to combine bbas provided by distinct pieces of evidence. It is set as $\forall A \subseteq \Theta$:

$$m_1 \oplus m_2(A) = \frac{1}{1-K} \sum_{B \cap C=A} m_1(B) m_2(C),$$

$$K = \sum_{B \cap C=\emptyset} m_1(B) m_2(C)$$

Evidence theory (1/2)

Frame of discernment	Basic Belief Assignment (bba)
$\Theta = \{\theta_1, \theta_2, \dots, \theta_N\}$	$m: 2^{\Theta} ightarrow [0,1]$
$2^{\Theta} = \{A, A \subseteq \Theta\}$	$\sum_{A\subseteq \Theta} m(A) = 1$

Introduction

Combination rule

The Dempster rule allows to combine bbas provided by distinct pieces of evidence. It is set as $\forall A \subseteq \Theta$:

$$m_1 \oplus m_2(A) = \frac{1}{1-K} \sum_{B \cap C=A} m_1(B) m_2(C),$$

$$K = \sum_{B \cap C=\emptyset} m_1(B) m_2(C)$$

Asma Trabelsi

Decision making

The TBM framework, which consists on two main levels (Credal level, Pignistic level), allows to make decision:

$$BetP(A) = \sum_{B \cap A = \emptyset} \frac{|A \cap B|}{|B|} m(B), \quad \forall A \in \Theta$$

Dependent combination rules

Evidence Theory

Enhanced Evidential & Nearest Neighbors classifier Ensemble Enhanced Evidential & Nearest Neighbors classifier Experimentation Conclusions & Future works

Evidence theory (2/2)

æ

イロト イボト イヨト イヨト

Evidence theory (2/2)

Dissimilarity between bbas

The Jousselme distance between two pieces of evidence m_1 and m_2 is found as follows:

$$d(m_1,m_2) = \sqrt{\frac{1}{2}(\overrightarrow{m_1} - \overrightarrow{m_2})^T D(\overrightarrow{m_1} - \overrightarrow{m_2})}$$

Evidence theory (2/2)

Dissimilarity between bbas

The Jousselme distance between two pieces of evidence m_1 and m_2 is found as follows:

$$d(m_1,m_2) = \sqrt{\frac{1}{2}(\overrightarrow{m_1} - \overrightarrow{m_2})^T D(\overrightarrow{m_1} - \overrightarrow{m_2})}$$

• $\overrightarrow{m_1}$ and $\overrightarrow{m_2}$ are vector representations of m_1 and m_2

Evidence theory (2/2)

Dissimilarity between bbas

The Jousselme distance between two pieces of evidence m_1 and m_2 is found as follows:

$$d(m_1,m_2) = \sqrt{\frac{1}{2}(\overrightarrow{m_1} - \overrightarrow{m_2})^T D(\overrightarrow{m_1} - \overrightarrow{m_2})}$$

- $\overrightarrow{m_1}$ and $\overrightarrow{m_2}$ are vector representations of m_1 and m_2
- *D* is the Jaccard similarity measure defined by:

$$D(A,B) = \begin{cases} 1 & \text{if } A = B = \emptyset \\ \frac{|A \cap B|}{|A \cup B|} & \forall A, B \in 2^{\Theta} \end{cases}$$

Introduction

2 Evidence Theory

3 Enhanced Evidential k Nearest Neighbors classifier

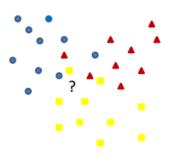
- Ensemble Enhanced Evidential k Nearest Neighbors classifier
- 5 Experimentation
- 6 Conclusions & Future works

→ ∃ → < ∃</p>

< A >

Enhanced Evidential k Nearest Neighbors classifier

- Let Ω = {w₁,..., w_c} denotes the set of classes.
- Each instance is described by:
 - Uncertain attribute values x ∈ R^N represented within the belief function framework;
 - A certain class label $y \in \Omega$.
- Objective: given a learning set $L = \{(x_1, y_1), \dots, (x_n, y_n)\}$, predict the class label of a new instance described by uncertain attribute values *x* using the *k* Nearest Neighbors classifier.



Enhanced Evidential k Nearest Neighbors classifier

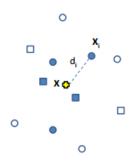
Example

Assume that our data are composed with five instances characterized by three uncertain attributes $x = \{Hair, Eye, Height\}$ and a certain class y with possible values $\{w_1, w_2\}$. The basic belief assignments, which are affected to the attribute values, will be defined on the frame of discernments $\Theta_{Hair} = \{Blond, Dark\}, \Theta_{Eye} = \{Brown, Blue\}$ and $\Theta_{Height} = \{Short, Middle, Tall\}$.

	Hair	Eye	Height	d
<i>O</i> ₁	$m_1^{\Theta_{Hair}}(\{Dark\})=0.5$	$m_1^{\Theta_{Eye}}(\{Brown\})=1$	$m_1^{\Theta_{Height}}(\{Middle\})=0.95$	Ω_1
	$m_1^{\Theta_{Hair}}(\Theta_{Hair})=0.5$	$m_1^{\Theta_{Eye}}(\Theta_{Eye})=0$	$m_1^{\Theta_{Height}}(\Theta_{Height})=0.05$	
<i>O</i> ₂	$m_2^{\Theta_{Hair}}(\{Blond\})=0.1$	$m_2^{\Theta_{Eye}}(\{Blue\})=0.82$	$m_2^{\Theta_{Height}}(\{Middle\})=1$	Ω1
	$m_2^{\Theta_{\mathit{Hair}}}(\Theta_{\mathit{Hair}})=0.9$	$m_2^{\Theta_{Eye}}(\Theta_{Eye})=0.18$	$m_2^{\Theta_{Height}}(\Theta_{Height})=0$	
<i>O</i> ₃	$m_3^{\Theta_{Hair}}(\{Blond\})=0.6$	$m_3^{\Theta_{Eye}}(\{Brown\})=0.2$	$m_3^{\Theta_{Height}}(\{Tall\})=0.55$	Ω2
	$m_3^{\Theta_{\mathit{Hair}}}(\Theta_{\mathit{Hair}})=0.4$	$m_3^{\Theta_{Eye}}(\Theta_{Eye})=0.8$	$m_3^{\Theta_{Height}}(\Theta_{Height})=0.45$	
<i>O</i> ₄	$m_4^{\Theta_{Hair}}(\{Dark\})=0.7$	$m_4^{\Theta_{Eye}}(\{Brwon\})=0$	$m_4^{\Theta_{Height}}(\{Short\})=1$	Ω1
	$m_4^{\Theta_{\mathit{Hair}}}(\Theta_{\mathit{Hair}})=0.3$	$m_4^{\Theta_{Eye}}(\Theta_{Eye})=1$	$m_4^{\Theta_{Height}}(\Theta_{Height})=0$	
<i>O</i> ₅	$m_5^{\Theta_{Hair}}(\{Blond\})=1$	$m_5^{\Theta_{Eye}}(\{Blue\})=0.18$	$m_5^{\Theta_{Height}}(\{Middle\})=0.15$	Ω2
	$m_5^{\Theta_{Hair}}(\Theta_{Hair})=0$	$m_5^{\Theta_{Eye}}(\Theta_{Eye})=0.82$	$m_5^{\Theta_{Height}}(\Theta_{Height})=0.85$	

Enhanced Evidential k Nearest Neighbors classifier

- Let $N_k(x) \subset L$ denotes the set of the *k* nearest neighbors of *x* in *L*, based on the Jousselme distance measure.
- Each x_i ∈ N_k(x) can be considered as a piece of evidence regarding the class of x.
- The strength of this evidence decreases with the distance *d_i* between *x* and *x_i*.



Enhanced Evidential k Nearest Neighbors classifier

< ロ > < 同 > < 回 > < 回

Enhanced Evidential k Nearest Neighbors classifier

If $y_i = w_k$, the evidence of (x_i, y_i) can be represented by the simple mass function:

$$m_i(\{w_k\}) = \varphi_k(d_i)$$

$$m_i(\{w_l\}) = 0 \forall l \neq k$$

$$m_i(\Omega) = 1 - \varphi_k(d_i)$$

I

(4) (2) (4)

Enhanced Evidential k Nearest Neighbors classifier

If $y_i = w_k$, the evidence of (x_i, y_i) can be represented by the simple mass function:

$$m_i(\{w_k\}) = \varphi_k(d_i)$$

$$m_i(\{w_l\}) = 0 \forall l \neq k$$

$$m_i(\Omega) = 1 - \varphi_k(d_i)$$

 d_i is calculated as the sum of Jousselme distances between the uncertain attribute values

Enhanced Evidential k Nearest Neighbors classifier

If $y_i = w_k$, the evidence of (x_i, y_i) can be represented by the simple mass function:

$$m_i(\{w_k\}) = \varphi_k(d_i)$$

$$m_i(\{w_l\}) = 0 \forall l \neq k$$

$$m_i(\Omega) = 1 - \varphi_k(d_i)$$

 d_i is calculated as the sum of Jousselme distances between the uncertain attribute values

 φ_k is a decreasing function from $[0, +\infty)$ to [0, 1] such that $\lim_{d\to +\infty} \varphi_k(d) = 0$.

Enhanced Evidential k Nearest Neighbors classifier

If $y_i = w_k$, the evidence of (x_i, y_i) can be represented by the simple mass function:

$$m_i(\{w_k\}) = \varphi_k(d_i)$$

$$m_i(\{w_l\}) = 0 \forall l \neq k$$

$$m_i(\Omega) = 1 - \varphi_k(d_i)$$

 d_i is calculated as the sum of Jousselme distances between the uncertain attribute values

 φ_k is a decreasing function from $[0, +\infty)$ to [0, 1] such that $\lim_{d\to +\infty} \varphi_k(d) = 0$.

Enhanced Evidential k Nearest Neighbors classifier

< ロ > < 同 > < 回 > < 回

Enhanced Evidential k Nearest Neighbors classifier

Choice of the function φ_k : $\varphi_k(d) = \alpha \exp(-\gamma_k d^2)$.

< ロ > < 同 > < 回 > < 回

Enhanced Evidential k Nearest Neighbors classifier

Choice of the function φ_k : $\varphi_k(d) = \alpha \exp(-\gamma_k d^2)$.

Parameters $\gamma_1, \ldots, \gamma_c$ can be optimized using:

- Exact method relying on a gradient search procedure for medium sized databases.
- A linearization method for large training sets.

Enhanced Evidential k Nearest Neighbors classifier

Choice of the function φ_k : $\varphi_k(d) = \alpha \exp(-\gamma_k d^2)$.

Parameters $\gamma_1, \ldots, \gamma_c$ can be optimized using:

- Exact method relying on a gradient search procedure for medium sized databases.
- A linearization method for large training sets.

 α is a parameter such that $0 < \alpha < 1$.

Enhanced Evidential k Nearest Neighbors classifier

Choice of the function φ_k : $\varphi_k(d) = \alpha \exp(-\gamma_k d^2)$.

Parameters $\gamma_1, \ldots, \gamma_c$ can be optimized using:

- Exact method relying on a gradient search procedure for medium sized databases.
- A linearization method for large training sets.

 α is a parameter such that $0 < \alpha < 1$.

The evidence of the k nearest neighbors of x is pooled using Dempster's rule of combination:

$$m = \bigoplus_{x_i \in N_k(x)} m_i$$

Outline

Introduction

- 2 Evidence Theory
- 3 Enhanced Evidential k Nearest Neighbors classifier
- Ensemble Enhanced Evidential k Nearest Neighbors classifier
- 5 Experimentation
- 6 Conclusions & Future works

→ Ξ →

Ensemble Enhanced Evidential *k* Nearest Neighbors classifier

< < >> < <</>

A 35 A 4

Ensemble Enhanced Evidential *k* Nearest Neighbors classifier

Diversity between classifiers is a substantial factor for achieving a good ensemble.

3 N 4

Ensemble Enhanced Evidential *k* Nearest Neighbors classifier

Diversity between classifiers is a substantial factor for achieving a good ensemble.

Diversity may be achieved by diversifying the input features

Ensemble Enhanced Evidential *k* Nearest Neighbors classifier

Diversity between classifiers is a substantial factor for achieving a good ensemble.

Diversity may be achieved by diversifying the input features

Ensemble Enhanced Evidential *k*-NN classifier through feature subspaces.

Ensemble Enhanced Evidential *k* Nearest Neighbors classifier

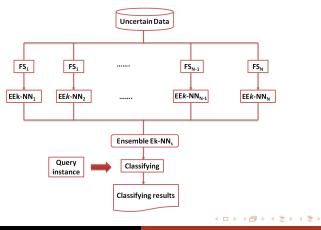
Diversity between classifiers is a substantial factor for achieving a good ensemble.

Diversity may be achieved by diversifying the input features

Ensemble Enhanced Evidential *k*-NN classifier through feature subspaces.

Generate feature subspaces using the Random Subspace Method.

Ensemble Enhanced Evidential *k* Nearest Neighbors classifier



Ensemble Enhanced Evidential *k* Nearest Neighbors classifier

< < >> < <</>

A 35 A 4

Ensemble Enhanced Evidential *k* Nearest Neighbors classifier

Number of created classifiers

25 EE*k*-NNs classifiers are sufficient for reducing the error rate and for improving performance.

Ensemble Enhanced Evidential *k* Nearest Neighbors classifier

Number of created classifiers

25 EE*k*-NNs classifiers are sufficient for reducing the error rate and for improving performance.

Size of feature subsets

Randomly select the subspace size, relative to each individual EEk-NN classifier, in the range [n/3;2n/3]

Outline

- Introduction
- 2 Evidence Theory
- 3 Enhanced Evidential k Nearest Neighbors classifier
- Ensemble Enhanced Evidential k Nearest Neighbors classifier

5 Experimentation

6 Conclusions & Future works

→ Ξ →

< A

Experimentation

Conclusions & Future works

Experimentation setups

æ

<ロト < 同ト < ヨト < ヨト

Experimentation

Conclusions & Future works

Experimentation setups

Databases	Instances	Attributes	Classes
Voting records	435	16	2
Heart	267	22	2
Monks	195	23	2
Lymphography	148	18	4
Audiology	226	69	24

э

<ロト < 同ト < ヨト < ヨト

Experimentation

Conclusions & Future works

Experimentation setups

Databases	Instances	Attributes	Classes
Voting records	435	16	2
Heart	267	22	2
Monks	195	23	2
Lymphography	148	18	4
Audiology	226	69	24

All these databases do not contain uncertain condition attributes represented within the belief function framework.

< ロ > < 同 > < 回 > < 回

Experimentation

Conclusions & Future works

Experimentation setups

Databases	Instances	Attributes	Classes
Voting records	435	16	2
Heart	267	22	2
Monks	195	23	2
Lymphography	148	18	4
Audiology	226	69	24

All these databases do not contain uncertain condition attributes represented within the belief function framework.

• • • • • • • • • • • •

Generate synthetic databases

Generate synthetic databases by taking into account the original databases and a degree of uncertainty *P* to transform actual condition attribute value v_{A^k} of each object u_i , where $A^k \in A$, into a basic belief assignment:

$$m_i^{\Theta_k}(\{v_{A^k}\}) = 1 - P$$

 $m_i^{\Theta_k}(\Theta_k) = P$

Experimentation

Conclusions & Future works

Experimentation setups

Databases	Instances	Attributes	Classes
Voting records	435	16	2
Heart	267	22	2
Monks	195	23	2
Lymphography	148	18	4
Audiology	226	69	24

All these databases do not contain uncertain condition attributes represented within the belief function framework.

Generate synthetic databases

Generate synthetic databases by taking into account the original databases and a degree of uncertainty *P* to transform actual condition attribute value v_{A^k} of each object u_i , where $A^k \in A$, into a basic belief assignment:

$$m_i^{\Theta_k}(\{v_{A^k}\}) = 1 - F$$
$$m_i^{\Theta_k}(\Theta_k) = P$$

The degree of uncertainty P takes value in the interval [0,1]:

- Certain Case (P=0)
- Low Uncertainty (0 ≤ P < 0.4)</p>
- Middle Uncertainty ($0.4 \le P < 0.7$)
- High Uncertainty $(0.7 \le P \le 1)$

Experimentation

Conclusions & Future works

Experimentation results

Results for Heart database (%)

	k = 1		<i>k</i> = 3		<i>k</i> = 5		<i>k</i> = 7		k = 9	
	EEk-	Ensemble	EEk-	Ensemble	EEk-	Ensemble	EEk-	Ensemble	EEk-NN	Ensemble
	NN	EEk-	NN	EEk-NN	NN	EEk-	NN	EEk-NN		EEk-NN
		NN				NN				
No	61.15	67.30	63.84	70.38	67.30	68.07	70	70.03	71.15	71.23
Low	58.46	68.84	64.23	66.15	66.92	69.23	68.07	68.07	79.03	78.24
Middle	60	69.23	63.07	65.38	66.15	67.69	69.61	67.30	68.07	67.69
High	63.84	68.46	63.07	65.76	66.36	66.53	70.76	71.13	69.61	70.03

Results for Vote Records database (%)

	<i>k</i> = 1		<i>k</i> = 3		<i>k</i> = 5		<i>k</i> = 7		k = 9	
	EEk-	Ensemble	EEk-	Ensemble	EEk-	Ensemble	EEk-	Ensemble	EEk-NN	Ensemble
	NN	EEk-	NN	EEk-NN	NN	EEk-	NN	EEk-NN		EEk-NN
		NN				NN				
No	92.79	92.05	92.32	92.65	93.02	92.32	93.72	94.01	93.72	92.81
Low	92.09	93.14	93.02	93.65	92.55	93.24	93.25	94.25	93.25	94.78
Middle	91.62	92.79	91.39	92.56	91.39	93.12	91.86	92.94	92.32	94.16
High	84.18	87.20	87.67	88.60	88.60	89.30	89.30	86.97	89.76	91.86

< < >> < <</>

→ E → < E</p>

Introduction

- 2 Evidence Theory
- 3 Enhanced Evidential k Nearest Neighbors classifier
- Ensemble Enhanced Evidential k Nearest Neighbors classifier
- 5 Experimentation
- 6 Conclusions & Future works

Image: A mage: A ma

→ ∃ → < ∃</p>

Conclusions

æ

イロト イボト イヨト イヨト

Conclusions

• An ensemble EEk-NN classifier through random subspaces.

< ロ > < 同 > < 回 > < 回

Conclusions

• An ensemble EEk-NN classifier through random subspaces.

• An ensemble EE*k*-NN classifier has outperformed the E*k*-NN that is learned in the full feature space.

Future works

< □ > < □ > < □ > < □ > < □ >

æ

Future works

• Solutions allowing to pick out the best feature subsets.

< ロ > < 同 > < 回 > < 回

Future works

Solutions allowing to pick out the best feature subsets.

• Compare an ensemble EE*k*-NN classifier through random subspaces with ensemble EE*k*-NN classifier learned through other feature subpace methods.

< ロ > < 同 > < 回 > < 回

THANK YOU FOR **ATTENTION! ANY QUESTIONS?**

< ロ > < 同 > < 回 > < 回 >