Computing Minimax Decisions with Incomplete Observations

Thijs van Ommen

University of Amsterdam

ISIPTA — July 10, 2017
Monty Hall’s game show

Initial probability:

1/3 1/3 1/3

Illustration by Gracia Bovenberg-Murris
Monty Hall’s game show

Initial probability:
1/3 1/3 1/3

Illustration by Gracia Bovenberg-Murris
Monty Hall’s game show

Initial probability:
1/3
1/3
1/3

New probability:
? ? 0

Illustration by Gracia Bovenberg-Murris
Formalizing the problem

We will look at the part of the problem after the initial choice of door\(^1\)

Step 1 Outcome \(X\) is randomly drawn from \(\mathcal{X} = \{x_1, x_2, x_3\}\) (the three doors) according to the uniform distribution \(p\)

\(^1\)This is the setting of Van Ommen, Koolen, Feenstra and Grünewald (2016), IJAR
We will look at the part of the problem after the initial choice of door\(^1\)

Step 1 Outcome \(X\) is randomly drawn from \(\mathcal{X} = \{x_1, x_2, x_3\}\) (the three doors) according to the uniform distribution \(p\)

Step 2 The quizmaster, knowing \(X\), chooses a set \(Y \in \mathcal{Y} = \{\{x_1, x_2\}, \{x_2, x_3\}\}\) such that \(Y \ni X\)

- The structure of \(\mathcal{Y}\) reflects that the quizmaster will always open one door, but never the door the contestant picked
- The chosen set \(Y\) is called the *message*

\(^1\)This is the setting of Van Ommen, Koolen, Feenstra and Grünewald (2016), IJAR
We will look at the part of the problem after the initial choice of door1

Step 1 Outcome X is randomly drawn from $\mathcal{X} = \{x_1, x_2, x_3\}$ (the three doors) according to the uniform distribution p

Step 2 The quizmaster, knowing X, chooses a set $Y \in \mathcal{Y} = \{\{x_1, x_2\}, \{x_2, x_3\}\}$ such that $Y \ni X$
- The structure of \mathcal{Y} reflects that the quizmaster will always open one door, but never the door the contestant picked
- The chosen set Y is called the message

Step 3 The contestant sees Y but not X, and must make a decision based on this incomplete observation

1This is the setting of Van Ommen, Koolen, Feenstra and Grünwald (2016), IJAR
We also want to know what probabilities to assign to the outcomes in a more general situation:

- For arbitrary (but finite) outcome spaces \mathcal{X};
- For arbitrary marginal distribution ρ;
- For arbitrary families of allowed messages \mathcal{Y}.
The quizmaster’s freedom of choice

- The quizmaster may use randomness when deciding which message Y to give us.
- However, we don’t know what distribution $P(Y \mid X)$ he uses.

The conditional distribution $P(Y \mid X)$ together with the marginal distribution p_X on X gives a joint distribution $P(X, Y)$:

- Quizmaster uses a fair coin:
 $$
 P(x_1, x_2, x_3) = \{x_1, x_2\} \frac{1}{3} \frac{1}{6} - \{x_2, x_3\} - \frac{1}{6} \frac{1}{3}
 $$
 $$
 p_{x_1} \frac{1}{3} \frac{1}{3} \frac{1}{3}
 $$

- Quizmaster always opens x_3:
 $$
 P(x_1, x_2, x_3) = \{x_1, x_2\} \frac{1}{3} \frac{1}{3} - \{x_2, x_3\} - 0 \frac{1}{3}
 $$
 $$
 p_{x_1} \frac{1}{3} \frac{1}{3} \frac{1}{3}
 $$

Decision maker has aleatory uncertainty about X, and epistemic uncertainty about Y given X. → the possible joint distributions form a credal set.
The quizmaster’s freedom of choice

- The quizmaster may use randomness when deciding which message \(Y \) to give us
- However, we don’t know what distribution \(P(Y \mid X) \) he uses
- The conditional distribution \(P(Y \mid X) \) together with the marginal distribution \(p \) on \(X \) gives a joint distribution \(P(X, Y) \):

<table>
<thead>
<tr>
<th>(P)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({x_1, x_2})</td>
<td>1/3</td>
<td>1/6</td>
<td>-</td>
</tr>
<tr>
<td>({x_2, x_3})</td>
<td>-</td>
<td>1/6</td>
<td>1/3</td>
</tr>
<tr>
<td>(p_x)</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Quizmaster uses fair coin:

<table>
<thead>
<tr>
<th>(P)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({x_1, x_2})</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Quizmaster always opens \(x_3 \):

<table>
<thead>
<tr>
<th>(P)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>({x_1, x_2})</td>
<td>1/3</td>
<td>1/3</td>
<td>-</td>
</tr>
<tr>
<td>({x_2, x_3})</td>
<td>-</td>
<td>0</td>
<td>1/3</td>
</tr>
<tr>
<td>(p_x)</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

- Decision maker has aleatory uncertainty about \(X \), and epistemic uncertainty about \(Y \) given \(X \)
- → the possible joint distributions form a credal set
Minimax decision problem

- Worst-case approach: we want to give guarantees on our decisions that hold no matter what mechanism is used to choose the message
 - Corresponds to a two-player zero-sum game between the contestant and the quizmaster
Minimax decision problem

- Worst-case approach: we want to give guarantees on our decisions that hold no matter what mechanism is used to choose the message
 - Corresponds to a two-player zero-sum game between the contestant and the quizmaster

Different action spaces possible:
- Contestant’s action may be choosing a single outcome
 - Can put any loss function on this
 - We allow him to randomize, to ensure existence of Nash equilibrium

Interesting alternative: it may be a prediction Q over the outcomes. Can then consider different loss functions (scoring rules); for example:
- Logarithmic loss: $L(x, Q) = -\log Q(x)$
- Brier loss: $L(x, Q) = \sum_{x' \in X} (Q(x') - 1)_{x'}^2$
Minimax decision problem

- Worst-case approach: we want to give guarantees on our decisions that hold no matter what mechanism is used to choose the message
 - Corresponds to a two-player zero-sum game between the contestant and the quizmaster

Different action spaces possible:

- Contestant’s action may be choosing a single outcome
 - Can put any loss function on this
 - We allow him to randomize, to ensure existence of Nash equilibrium

- Interesting alternative: it may be a prediction Q over the outcomes
 - Can then consider different loss functions (scoring rules); for example:

 \[
 \begin{align*}
 \text{Logarithmic loss:} & \quad L(x, Q) = - \log Q(x) \\
 \text{Brier loss:} & \quad L(x, Q) = \sum_{x' \in \mathcal{X}} (Q(x') - 1_{x' = x})^2
 \end{align*}
 \]
If L is logarithmic loss, the characterization of optimality takes a very nice form:

Theorem (IJAR 2016 paper)

For logarithmic loss, a joint distribution P^* is optimal for the quizmaster if and only if there exists a vector $q \in [0, 1]^X$ such that

$$q_x = P^*(x \mid y) \quad \text{for all } x \in y \in \mathcal{Y} \text{ with } P^*(y) > 0, \text{ and}$$

$$\sum_{x \in y} q_x \leq 1 \quad \text{for all } y \in \mathcal{Y}$$

We call this condition on P^* the RCAR condition.
If L is logarithmic loss, the characterization of optimality takes a very nice form:

Theorem (IJAR 2016 paper)

For logarithmic loss, a joint distribution P^* is optimal for the quizmaster if and only if there exists a vector $q \in [0, 1]^\mathcal{X}$ such that

$$q_x = P^*(x \mid y) \quad \text{for all } x \in y \in \mathcal{Y} \text{ with } P^*(y) > 0, \text{ and}$$

$$\sum_{x \in y} q_x \leq 1 \quad \text{for all } y \in \mathcal{Y}$$

We call this condition on P^* the **RCAR condition**

Same condition applies if \mathcal{Y} is a ‘graph game’ or a ‘matroid game’, for any loss function!
Previous theorem allows us to recognize whether a strategy is minimax optimal, but not to *find* such strategies.

- One thing that makes this hard: combinatorial search due to distinction $P^*(y) > 0$ vs. $P^*(y) = 0$
Previous theorem allows us to recognize whether a strategy is minimax optimal, but not to find such strategies

- One thing that makes this hard: combinatorial search due to distinction $P^*(y) > 0$ vs. $P^*(y) = 0$
- And another: may require solving system of polynomial equations
Partition matroid: partition \mathcal{X} into S_1, \ldots, S_k; \mathcal{Y} consists of all subsets of \mathcal{X} that take one element from each S_i

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>${x_1, x_3}$</td>
<td>*</td>
<td>−</td>
<td>*</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>${x_1, x_4}$</td>
<td>*</td>
<td>−</td>
<td>−</td>
<td>*</td>
<td>−</td>
</tr>
<tr>
<td>${x_1, x_5}$</td>
<td>*</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>*</td>
</tr>
<tr>
<td>${x_2, x_3}$</td>
<td>−</td>
<td>*</td>
<td>*</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>${x_2, x_4}$</td>
<td>−</td>
<td>*</td>
<td>−</td>
<td>*</td>
<td>−</td>
</tr>
<tr>
<td>${x_2, x_5}$</td>
<td>−</td>
<td>*</td>
<td>−</td>
<td>−</td>
<td>*</td>
</tr>
</tbody>
</table>
Well-behaved case: Partition matroids

Partition matroid: partition \mathcal{X} into S_1, \ldots, S_k; \mathcal{Y} consists of *all* subsets of \mathcal{X} that take one element from each S_i

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>${x_1, x_3}$</td>
<td>*</td>
<td>—</td>
<td>*</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>${x_1, x_4}$</td>
<td>*</td>
<td>—</td>
<td>—</td>
<td>*</td>
<td>—</td>
</tr>
<tr>
<td>${x_1, x_5}$</td>
<td>*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>*</td>
</tr>
<tr>
<td>${x_2, x_3}$</td>
<td>—</td>
<td>*</td>
<td>*</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>${x_2, x_4}$</td>
<td>—</td>
<td>*</td>
<td>—</td>
<td>*</td>
<td>—</td>
</tr>
<tr>
<td>${x_2, x_5}$</td>
<td>—</td>
<td>*</td>
<td>—</td>
<td>—</td>
<td>*</td>
</tr>
</tbody>
</table>

Example:

- messages (rows) are products
- $S_1 = \{x_1, x_2\}$ are brands, $S_2 = \{x_3, x_4, x_5\}$ are colours; customers buy products based on preference for either a brand or a colour
- shopkeeper observes customer buying a product and wants to know underlying preference
For partition matroid, RCAR solution can be computed directly:

- \(q_x = \sum_{x' \in S_i} p_{x'} \), where \(S_i \) is the set containing \(x \)
- Possible choice for \(P(y) \) (may not be unique):

\[
P(y) = \prod_{x \in y} \frac{p_x}{q_x}.
\]
For partition matroid, RCAR solution can be computed directly:

- \(q_x = \sum_{x' \in S_i} p_{x'} \), where \(S_i \) is the set containing \(x \)
- Possible choice for \(P(y) \) (may not be unique):

\[
P(y) = \prod_{x \in y} \frac{p_x}{q_x}.
\]

Interpretation: this \(P \) makes the message \(Y \) independent of the index \(l \) of the true set \(S_i \) — tells the decision maker nothing extra!
RCAR solutions play a central role in this decision problem with incomplete observations, but are often hard to compute. . . but are very easy to compute if \mathcal{Y} is a partition matroid!

Efficient algorithms for graph games and general matroid games also exist (Chapter 8 of Van Ommen, 2015).

Thank you!
Optimal strategy may depend on the loss function

This strategy \(P \) is optimal for logarithmic loss (it satisfies the RCAR condition), but not for Brier loss.
If the set of available messages \mathcal{Y} forms a graph (meaning that each message contains exactly two outcomes), then the RCAR condition characterizes optimality regardless of the loss function;

If \mathcal{Y} forms a matroid (satisfies the matroid basis exchange property), then the same is true;

For any other \mathcal{Y}, this is not the case: there exists some marginal p such that the optimal strategies for log loss and Brier loss are different.