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Motivation for learning decomposable models

Decomposable models are fundamental graphical models, which form the
theoretical basis for the method of local computation. They are described
by chordal undirected graphs and can be viewed as special cases of
Bayesian network models, described by directed acyclic graphs.

There are various methods for learning the structure of decomposable
models. This contribution deals with a score-based approach, where the
task is to maximize some additively decomposable score (BIC or BDeu).

Specifically, we are interested in the integer linear programming (ILP)
approach to structural learning (of decomposable models).
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Encoding decomposable models by characteristic imsets

There are more ways to encode Bayesian network models. The most
successful one seems to be to encode them by family-variable vectors.

[@ J. Cussens (2011). Bayesian network learning with cutting planes.
Uncertainty in Artificial Intelligence 27, 153-160.

However, the approach discussed in this contribution is based on encoding
the models by characteristic imsets, which are certain zero-one vectors
with components indexed by subsets of the set of nodes N.

ﬁ R. Hemmecke, S. Lindner, and M. Studeny (2012). Characteristic imsets for

learning Bayesian network structure. International Journal of Approximate
Reasoning 53, 1336-1349.
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Chordal graph polytope

Our approach leads to the study of the geometry of a polytope defined as
the convex hull of all characteristic imsets for chordal graphs. This
polytope has already been studied by Lindner in her thesis.

[ S. Lindner (2012). Discrete optimization in machine learning: learning
Bayesian network structures and conditional independence implication. PhD
thesis, TU Munich.

Following Lindner we name this polytope the
, but abbreviate this to chordal graph polytope.

It is advantageous for the application of ILP maximization methods to
have a polyhedral description of the polytope (= by means of linear
inequalities), in other words, the characterization of its facets.
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Clutter inequalities for the chordal graph polytope

We were able to compute the facets in cases of at most 5 nodes and to
classify all facet-defining inequalities in those cases.

With the exception of a natural lower bound inequality, there is a
one-to-one correspondence between the inequalities and the clutters of
subsets of the node set N containing at least one singleton. Thus, we call
these clutter inequalities.

This establishes a sensible conjecture about the
complete polyhedral description of the polytope.

Moreover, we offer a method to tackle an important separation problem:
that is, given a non-integer solution to an LP relaxation problem, find a
clutter inequality which (most) violates the current solution.

In the paper, we also discuss some preliminary empirical work, which only confirmed that
to perform well-based computational experiments one has to solve a further theoretical

task, namely, to design a method for pruning the score in case of decomposable models.
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The concept of a characteristic imset

Each characteristic imset is an element of the vector space R" where
AN={SCN: |S5>2}.

Definition (characteristic imset)

Given a chordal graph G over N, the characteristic imset of G is a
zero-one vector cg with components indexed by subsets S from A:

co(S) = 1 if S is a complete set in G and S € A,
)7 0 for remaining S € A.

We adopt a convention that cg(L) =1 for any L C N with |L| = 1.

Since decomposable models induced by chordal undirected graphs can be
viewed as special cases of Bayesian network models each sensible scoring
criterion is an affine function of the characteristic imset.
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Example: characteristic imsets
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Definition of the polytope

Definition (chordal graph polytope)
Let us introduce the chordal graph polytope over N as

Dy := conv({cg : G chordal graph over N}),

where conv (+) is used to denote the convex hull.

Analogously, a chordal graph polytope with cliques size limit k,
2 < k < n=|N|, can be introduced:

Dy, = conv({cc : G chordal graph over N with clique size at most k} ).
The dimension of D,’{, is 25:2 (Z) In particular, for the unrestricted

polytope Dy := Df, one has dim (Dy) = 2" — n — 1, while the most
restricted polytope for learning undirected forests has dim (D,ZV) = ('2’)
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Example: the case of 3 nodes

In the case n = |N| =3, Dy has 8 vertices, namely 8 chordal graphs, and
8 facet-defining inequalities, decomposing into 4 permutation types.

With N = {a, b, c}, these are:
lower bound: 0 < c({a, b, c}),
2-to-3 monotonicity inequalities: c({a, b, c}) < c({a, b}),
upper bounds: c({a, b}) <1,

cluster inequality for 3-element set:

c({a, b}) +c({a, c}) +c({b, c}) <2 +c({a, b, c}).

Note that the cluster inequalities (formulated in terms of family variables)
have already occurred in the context of learning BN structure.

ﬁ T. Jaakkola,D. Sontag, A. Globerson, and M. Meila (2010). Learning
Bayesian network structure using LP relaxations. JMLR Workshop and
Conference Proceedings 9, 358-365.
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The cases of 4 and 5 nodes

In the case n = |N| = 4, the unrestricted polytope Dy has 61 vertices,
that is, 61 chordal graphs.

In the case n = |N| =5, Dy has 822 vertices since there are 822
decomposable models. The number of its facets is again smaller, just 682,
and they fall into 29 permutation types.

An interesting observation is this: in the case n = |N| < 5, with the
exception of the lower bound 0 < ¢(N), all facet-defining inequalities for
Dy have the form of a generalized monotonicity:

Yo oRS)-Sufry) < D K(S)-<(S)

SCN\{~} SCN\{~}

where 7 is a distinguished element of N and the x(S) are integer
coefficients.
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Introducing the clutter inequalities

A deeper fact is that the inequalities can be interpreted as inequalities
induced by certain clutters of subsets of N, by which we mean classes of
subsets of N that are inclusion incomparable.

Definition

Given a clutter £ of subsets of N which contains at least one singleton
and satisfies || J £| > 2, the corresponding clutter inequality for c € R*
has the form

1< Z@;&ng(—l)'BHl gel(eiai , (1)

where a convention is applied that c(L) = 1 whenever L C N, |L| = 1.

We have re-written (1) in the form

1 < Z kc(S) - c(S) and gave a formula for coefficients ().
SCN
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Example: what are the clutters in case of 3 nodes
With N = {a, b, ¢}, after the removal of the lower bound, there are 7
clutter inequalities decomposing into 3 types:
2-to-3 monotonicity inequalities: ¢({a, b, c}) < c({a, b}) .
take £ = {ab, c}, (1) gives 1 < c(ab)+ c(c) — c(abc)
and, because of ¢(c) =1, one gets c(abc) < c(ab).

upper bounds: ¢({a,b}) <1,
take £ ={a, b}, (1) gives 1 <c(a)+c(b)—c(a
and, since c(a) = c¢(b) =1, one gets  c(ab) < 1.
cluster inequality for 3-element set:
c({a, b}) +c({a,c}) + c({b,c}) <2+ c({a b, c}),
take £ ={a, b, c}, (1) gives

1 <c(a) +c(b) + c(c) — c(ab) — c(ac) — c(bc) + c(abc)
and one gets c(ab) + c(ac) +c(bc) < 2+ c(abc).
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The conjectures
We have the following conjecture, we know is valid in case |N| < 5.

Conjecture 1

For any |N| > 2, the set of facet-defining inequalities for ¢ € Dy consists
of the lower bound 0 < c¢(N) and the clutter inequalities (1) for such
clutters £ of subsets of N containing at least one singleton and ||J £| > 2.

As concerns a prescribed clique size limit k, we conjecture the following.

Conjecture 2

For any 2 < k < n, a polyhedral description of D,’{, is given by the lower
bounds 0 < ¢(K) for K C N, |K| = k and the inequalities (1) induced by
clutters £ which are subsets of {L C N : |L| < k}, contain at least one
singleton and satisfy ||J £| > 2.

Note that not every inequality from Conjecture 2 is facet-defining for DX:
the problem of a precise characterization of facets of D,’{, is more subtle.
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The main result of the paper

In the appendix of the paper we derive a formula for the LHS of the
clutter inequality (1) in terms of the M&bius inversion of the characteristic
imset. This allows to show easily the following result.

Corollary

Given a chordal graph G over N, |N| > 2, all inequalities from
Conjecture 1 are valid for the characteristic imset c¢.

Nevertheless, we have a stronger theoretical result, namely that every
clutter inequality is facet-defining for Dy, for any |N| > 2. However, its
proof was omitted because of page limitation.
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|dea of the cutting plane method

Since every clutter inequality is facet-defining for Dy, the number of
inequalities describing Dy is super-exponential in n = |N| and the use of a
pure LP approach is not realistic.

Instead, integer linear programming (ILP) methods can be applied,
specifically the cutting plane method. In this approach, the initial task is
to solve an LP problem which is a relaxation of the original problem:
namely to maximize the objective over a polyhedron P with Dy C P,
where P is specified by a modest number of inequalities, typically, by some
sub-collection of valid inequalities for Dy.

Unless the optimal solution c* to the relaxed problem has only integer
components, one has to solve a separation problem, which is to find a
linear constraint (a cutting plane) which separates c* from Dy.
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Separation problem

The search limited to the clutter inequalities leads to the next task:

Given c* ¢ Dy find clutter(s) L such that the inequality (1) is
(most) violated by c*, in other words, we minimize
L= scy ke(S) - c*(S) over L.

Our idea is to re-formulate this in the form of a few auxiliary LP problems.

Specifically, if we fix a distinguished element v € N and limit our search to
clutters £ with {v} € £ and (UL) \ {7} # 0, then it leads to the task to

solve an LP problem to minimize the above objective given by c* over

certain polytope.

We found a complete polyhedral description of that auxiliary polytope.
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Conclusions

There are further supporting arguments for the conjectures. Specifically,
we have derived from a classic matroid theory 1970 result by Edmonds
that

. Thus, Conjecture 2 is true in case k = 2.

We also have a promising ILP formulation for chordal graph learning using
a subset of the facet-defining inequalities of Dy as constraints.

The big theoretical challenge remains: to confirm/disprove Conjecture 1.
Even if confirmed, a further open problem is to characterize facet-defining
inequalities for Dk, 2 < k < n, within the clutter ones.

The preliminary empirical experiments indicate that a further theoretical
goal should be to develop special pruning methods under the assumption
that the optimal chordal graph is the learning goal. The subsequent goal,
based on the result of pruning, can be to modify the proposed LP methods
for solving the separation problem to become more efficient.
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Some recent literature on learning DM

Two recent papers on ILP-based learning of decomposable models used a
different binary coding of the models/graphs.

[§ K.S. Sesh Kumar and F. Bach (2013). Convex relaxations for learning
bounded-treewidth decomposable graphs. JMLR Workshop and Conference
Proceedings 28 (1), 525-533.

ﬁ A. Pérez, C. Blum, and J. A. Lozano (2014). Learning maximum weighted
(k 4 1)-order decomposable graphs by integer linear programming. Lecture
Notes in Al 8754, 396-408.

Moreover, two other recent papers devoted to learning decomposable
models used encodings of junction trees.

[§ J. Corander, T. Janhunen, J. Rintanen, H. Nyman, and J. Pensar (2013).
Learning chordal Markov networks by constraint satisfaction. Advances in
Neural Information Processing Systems 26, 1349-1357.

ﬁ K. Kangas, T. Niinimaki, and M. Koivisto (2014). Learning chordal Markov
networks by dynamic programming. Advances in Neural Information
Processing Systems 27, 2357-2365.
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