# Bayesian Matrix Factorization with Non-Random Missing Data using Informative Gaussian Process Priors and Soft Evidences

#### Bence Bolgár and Péter Antal

Budapest University of Technology and Economics Department of Measurement and Information Systems

September 6, 2016







#### Goals

From known drug-target interaction measurements, estimate binding affinities for other drug-target pairs.

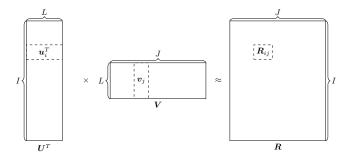
#### Problems:

- 1. Incorporating **entity-wise** "side information", *e.g.* molecular structures, side-effect profiles *etc*.
- Incorporating other estimates of pairwise interaction data, e.g. molecular docking simulations.
- 3. Measurement data are highly incomplete, *i.e.* most of the drug–target pairs are not measured or kept in secret. We aim to exploit the information hidden in this "missingness pattern".

#### Matrix factorization

Introduction

00000



Find **complete** factors  $U \in \mathbb{R}^{L \times I}$  and  $V \in \mathbb{R}^{L \times J}$ , such that  $U^T V \approx R$ .

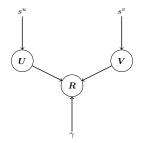
- $\triangleright$   $u_i \sim i th drug,$
- $\nu_i \sim j$ th target,
- $ightharpoonup R_{ij} \sim$  their binding affinity,
- $\triangleright L \ll I, J$  free parameter (rank).

## Singular Value Decomposition

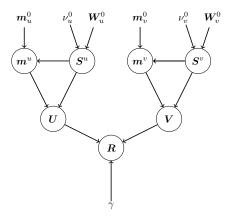
$$\arg\min_{\boldsymbol{U},\boldsymbol{V}} \left\| \boldsymbol{R} - \boldsymbol{U}^T \boldsymbol{V} \right\|_F$$

Solve for U and V using SVD and compose U,V from the vectors corresponding to the L largest singular values. However:

- Does not handle missing entries,
- $\lor$  *U*, *V* can have arbitrarily large values  $\Rightarrow$  overfitting.



$$p(\mathbf{R}|\mathbf{U}, \mathbf{V}, \gamma) = \prod_{i} \prod_{j} \left[ \mathcal{N}(\mathbf{R}_{ij} | \mathbf{u}_{i}^{T} \mathbf{v}_{j}, \gamma^{-1}) \right]^{l_{ij}}$$
$$p(\mathbf{U}|s^{u}) = \prod_{i} \mathcal{N}(\mathbf{u}_{i} | \mathbf{0}, s^{u} \mathbf{I})$$



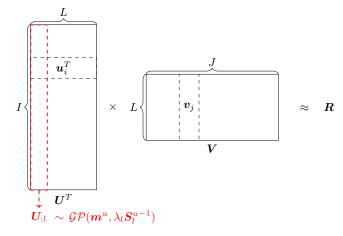
$$\begin{split} p(\pmb{U}|\pmb{m}^u, \pmb{S}^u) &= \prod_{i=1}^I \mathcal{N}(\pmb{u}_i|\pmb{m}_i^u, \pmb{S}_i^{u-1}), \\ p(\pmb{m}^u, \pmb{S}^u|\pmb{m}_u^0, \nu_u^0, \pmb{W}_u^0) &= \mathcal{NW}(\pmb{m}^u, \pmb{S}^u|\pmb{m}_u^0, \kappa, \pmb{W}_u^0, \nu_u^0), \end{split}$$

## Incorporating side information

- In chemoinformatics, side information usually come in the form of high-dimensional real vectors encoding chemical structure ("fingerprints").
- Very often, similarity matrices are computed ("Similar Property Principle") and used in prioritization algorithms ("Virtual Screening").
- With a suitable choice of similarity measure(s), these matrices are symmetric and PD.

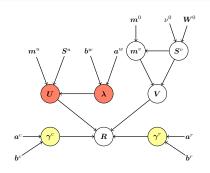
Let's use them as a covariance matrices of L independent Gaussian Processes over the **rows** of U, enforcing similarities over  $u_i$ 's (Zhou *et al.*, 2012).

## Incorporating side information with Gaussian Processes



$$p(\boldsymbol{U}|\boldsymbol{m}^{u}, \boldsymbol{S}^{u}, \boldsymbol{\lambda}) = \prod_{l=1}^{L} \mathcal{N}(\boldsymbol{U}_{l:}|\boldsymbol{m}_{l:}^{u}, \lambda_{l} \boldsymbol{S}_{l}^{u-1}),$$

#### Model so far



$$p(\boldsymbol{\lambda}|\boldsymbol{a}^{w},\boldsymbol{b}^{w}) = \prod_{l}^{L} \mathcal{IG}(\lambda_{l}|a_{l}^{w},b_{l}^{w}),$$

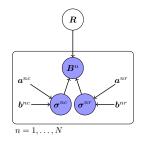
(• weighted features)

$$p(\boldsymbol{\lambda}|\boldsymbol{a}^{w},\boldsymbol{b}^{w}) = \prod_{l=1}^{L} \mathcal{IG}(\lambda_{l}|\boldsymbol{a}_{l}^{w},\boldsymbol{b}_{l}^{w}), \qquad (\bullet \text{ weighted features})$$

$$p(\boldsymbol{R}|\boldsymbol{U},\boldsymbol{V},\boldsymbol{\gamma}^{c},\boldsymbol{\gamma}^{r}) = \prod_{i=1}^{I} \prod_{j=1}^{J} \left[ \mathcal{N}(\boldsymbol{R}_{ij}|\boldsymbol{u}_{i}^{T}\boldsymbol{\nu}_{j},(\boldsymbol{\gamma}_{i}^{c}\boldsymbol{\gamma}_{j}^{r})^{-1}) \right]^{I_{ij}}, \qquad (\bullet \text{ affinities})$$

$$p(\gamma^c|\boldsymbol{a}^c,\boldsymbol{b}^c) = \prod_{i=1}^{I} \mathcal{G}a(\gamma_i^c|a_i^c,b_i^c).$$
 (• per-entity precison)

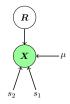
## Incorporating background knowledge



$$\begin{split} p(\pmb{B}^n|\pmb{R},\sigma^c,\sigma^r) &= \prod_{i=1}^I \prod_{j=1}^J \left[ \mathcal{N}(\pmb{B}^n_{ij}|\pmb{R}_{ij},(\sigma^{nc}_i\sigma^{nr}_j)^{-1}) \right]^{l_{ij}}, \quad \text{($\bullet$ external estimates)} \\ p(\pmb{\sigma}^{nc}|\pmb{a}^{nc},\pmb{b}^{nc}) &= \prod_{i=1}^I \mathcal{G}a(\sigma^{nc}_i|\pmb{a}^{nc}_i,\pmb{b}^{nc}_i), \quad \text{($\bullet$ per-entity precision)} \end{split}$$

(• per-entity precision)

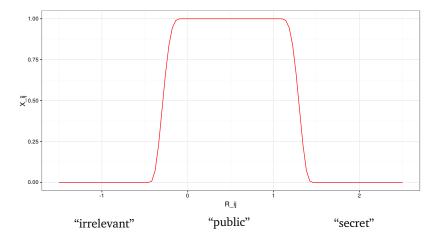
### Handling missing data



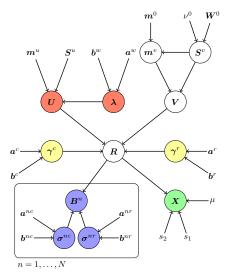
$$p(X|R, s_1, s_2, \mu) = \prod_i \prod_j \mathcal{B}(X_{ij}|f(R_{ij}, s_1, s_2, \mu)), \qquad (\bullet \text{ missingness})$$

$$f(x, s_1, s_2, \mu) = \begin{cases} 1, & \text{if } |x - \mu| < s_1 \\ 0, & \text{if } |x - \mu| \ge s_2 \\ \sigma\left(-\frac{s_1^2 + s_2^2 - 2(x - \mu)^2}{((x - \mu)^2 - s_1^2) \cdot ((x - \mu)^2 - s_2^2)}\right) & \text{otherwise.} \end{cases}$$

# Bump function



# Complete model



## Gibbs sampling

This choice of conjugate priors makes the derivation of conditionals trivial for almost all variables, except<sup>1</sup>:

- Sampling *U*. Still Gaussian, mean vector and covariance matrix still efficiently computable with BLAS.
- Sampling  $\lambda$ . Still  $\mathcal{IG}$ , looks very much like the usual update equation with a slightly different quadratic term in the second parameter.
- ▷ Sampling *R*. We have not found the correct normalization coefficient yet, moreover, the conditional is in general not log-concave. Therefore we utilize slice sampling for this step.

<sup>&</sup>lt;sup>1</sup>Proofs included in the Appendix of the article.

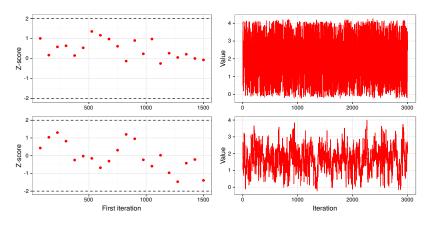
### Root mean squared error

|       | HuTolt |       |       |       | Macau | BPMF   |
|-------|--------|-------|-------|-------|-------|--------|
|       | 2K+MDM | 2K    | 1K    | 0K    | Macau | DPIVIF |
| Mean  | 0.669  | 0.698 | 0.733 | 0.767 | 0.749 | 0.817  |
| StDev | 0.041  | 0.017 | 0.032 | 0.075 | 0.058 | 0.132  |
| Diff  | 0.126  | 0.050 | 0.087 | 0.176 | 0.159 | 0.392  |

#### Settings:

- ▶ 37 psychiatric drugs from the N06\* ATC class with 82 targets.
- ▶ 446 binding affinities from the ChEMBL database (14.7% completeness).
- Klekota–Roth and MACCS fingerprints with the Tanimoto similarity measure.
- For a fair comparison, the background knowledge module was not utilized.
- ▶ We used  $\mathcal{NW}(\mathbf{0}, 1000, I, L)$  for the prior of V,  $\mathcal{N}(\mathbf{0}, S^u)$  for U, Gamma priors were parameterized with a = 1, b = 1, Inverse Gammas with a = 1, b = 2 and 8 latent factors were utilized (4 for each similarity).
- Evaluated with 100-fold 80% − 20% cross-validation, compared to
   BPMF (Salakhutdinov et al., 2008).
  - Macau (Simm et al., 2016).

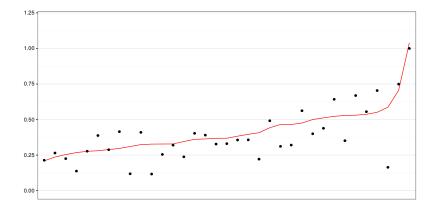
## Convergence for high and low affinities



Geweke-Brooks

Trace plot

# Correlation between fingerprint and factor similarities



#### Future work

- Investigating the detailed effects of the modules by systematically evaluating their combinations.
- ▶ Investigating the detailed effects of the hyperparameters.
- Scaling up using parallel implementations (GPGPU), alternative MCMC methods, low-rank approximation.
- ▶ Handling multiple interaction scores in a multitask fashion.

This work has been supported by OTKA 112915, the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (P. Antal) and Richter Témapályázat 2014.