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Goals

From known drug–target interaction measurements, estimate binding
affinities for other drug–target pairs.

Problems:

1. Incorporating entity-wise “side information”, e.g. molecular structures,
side-effect profiles etc.

2. Incorporating other estimates of pairwise interaction data, e.g. molecular
docking simulations.

3. Measurement data are highly incomplete, i.e. most of the drug–target
pairs are not measured or kept in secret. We aim to exploit the
information hidden in this “missingness pattern”.
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Matrix factorization
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Find complete factors U ∈ RL×I and V ∈ RL×J, such that UTV ≈ R.
. ui ∼ ith drug,
. vj ∼ jth target,
. Rij ∼ their binding affinity,
. L� I, J free parameter (rank).
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Singular Value Decomposition

arg min
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F

Solve for U and V using SVD and compose U,V from the vectors
corresponding to the L largest singular values. However:
. Does not handle missing entries,
. U,V can have arbitrarily large values⇒ overfitting.
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Probabilistic Matrix Factorization (Salakhutdinov et al., 2008.)
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Bayesian Probabilistic Matrix Factorization (Salakhutdinov et al., 2008.)
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Incorporating side information

. In chemoinformatics, side information usually come in the form of
high-dimensional real vectors encoding chemical structure
(“fingerprints”).

. Very often, similarity matrices are computed (“Similar Property
Principle”) and used in prioritization algorithms (“Virtual Screening”).

. With a suitable choice of similarity measure(s), these matrices are
symmetric and PD.

Let’s use them as a covariance matrices of L independent Gaussian Processes
over the rows of U, enforcing similarities over ui’s (Zhou et al., 2012).
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Incorporating side information with Gaussian Processes
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Model so far
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Incorporating background knowledge
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Handling missing data
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Bump function
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Complete model
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Gibbs sampling

This choice of conjugate priors makes the derivation of conditionals trivial for
almost all variables, except1:

. Sampling U. Still Gaussian, mean vector and covariance matrix still
efficiently computable with BLAS.

. Sampling λ. Still IG, looks very much like the usual update equation
with a slightly different quadratic term in the second parameter.

. Sampling R. We have not found the correct normalization coefficient yet,
moreover, the conditional is in general not log-concave. Therefore we
utilize slice sampling for this step.

1Proofs included in the Appendix of the article.
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Root mean squared error

HuTolt
Macau BPMF

2K+MDM 2K 1K 0K
Mean 0.669 0.698 0.733 0.767 0.749 0.817
StDev 0.041 0.017 0.032 0.075 0.058 0.132

Diff 0.126 0.050 0.087 0.176 0.159 0.392

Settings:
. 37 psychiatric drugs from the N06* ATC class with 82 targets.
. 446 binding affinities from the ChEMBL database (14.7% completeness).
. Klekota–Roth and MACCS fingerprints with the Tanimoto similarity

measure.
. For a fair comparison, the background knowledge module was not

utilized.
. We used NW(0, 1000, I, L) for the prior of V, N (0, Su) for U, Gamma

priors were parameterized with a = 10, b = 1, Inverse Gammas with
a = 1, b = 2 and 8 latent factors were utilized (4 for each similarity).

. Evaluated with 100-fold 80%− 20% cross-validation, compared to
. BPMF (Salakhutdinov et al., 2008).
. Macau (Simm et al., 2016).
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Convergence for high and low affinities
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Correlation between fingerprint and factor similarities
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Future work

. Investigating the detailed effects of the modules by systematically
evaluating their combinations.

. Investigating the detailed effects of the hyperparameters.

. Scaling up using parallel implementations (GPGPU), alternative MCMC
methods, low-rank approximation.

. Handling multiple interaction scores in a multitask fashion.

This work has been supported by OTKA 112915, the János Bolyai Research Scholarship of the

Hungarian Academy of Sciences (P. Antal) and Richter Témapályázat 2014.
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