RELEVANT PATH SEPARATION: A FASTER METHOD FOR TESTING INDEPENDENCIES IN BAYESIAN NETWORKS

Cory J. Butz

butz@cs.uregina.ca University of Regina Canada André E. dos Santos

dossantos@cs.uregina.ca University of Regina Canada

Jhonatan S. Oliveira

oliveira@cs.uregina.ca University of Regina Canada

OUTLINE

- D-SEPARATION
- MOTIVATION
- RP-SEPARATION
- EXPERIMENTAL RESULTS
- CONCLUSION

INTRODUCTION

- d-separation was instrumental in the founding of Bayesian networks
- it continues to be useful today
 - causal inference in statistics (Pearl, 2016)
 - cause and correlation in biology (Shipley, 2016)
 - population extrapolation (Pearl and Bareinboim, 2014)
 - handling missing data (Mohan and Pearl, 2014)
 - deep learning (Goodfellow et al., 2016)

INTRODUCTION

- d-separation is a graphical method for testing independencies in BNs
- I(X,Y,Z) means X and Z are conditionally independent given Y

THE KEY QUESTION

- determine whether there exists an active path from X to Z with respect to Y
- when explaining the test of independence I(X, Y, Z), the probabilistic reasoning literature tends to discuss traversing irrelevant paths

EXAMPLE: IRRELEVANT PATH

- Is the path (a,c), (c,f), (f,h), (h,g) active or blocked?
- This path is necessarily blocked

PRACTICAL IMPLEMENTATIONS

- Geiger et al. (1989)
- Bayes-Ball (BB) (Shachter, 1998)
- REACHABLE algorithm (Koller and Friedman, 2009)
- also explore irrelevant paths

GEIGER ET AL. (1989)

- first linear implementation
- explores every edge in the BN

BAYES-BALL AND REACHABLE

- Bayes-Ball was the first method to explore the active part of a BN
- explore all nodes reachable along active paths from X with respect to Y
- REACHABLE tests I(X,Y,Z) this way

THE ACTIVE PART OF A BN

AN OVERLOOKED RESULT

• For I(X,Y,Z), Lauritzen et al. (1990) established that all active paths from X to Z given Y can only involve variables in

XYZ U An(XYZ)

• we call this the **relevant part** of a BN

THE RELEVANT PART OF A BN

ACTIVE VERSUS RELEVANT I(a,e,g)

Relevant Path Separation

• a path is **relevant**, if it only involves nodes in

XYZ U An(XYZ)

- restrict traversal to the intersection of the active and relevant parts of a BN
- explore relevant paths that are active

- linear implementation of RP-REACHABLE
- based upon
 REACHABLE
- lines 4, 19, 22, 27, 31

X within the relevant part of a BN \mathcal{B} .	,,				
1: procedure RP-REACHABLE(X, Y, Z, B)					
2: ▷ Initialization					
3: $A \leftarrow Y \cup An(Y)$					
4: $XYZ^{up} \leftarrow XYZ \cup An(XYZ)$	▷ The relevant part of B				
5: for $v \in X$ do	(Variable, direction) to be visited				
6: $L \leftarrow L \cup \{(\uparrow, v)\}$					
7: $V \leftarrow \emptyset$	(Variable, direction) marked as visited				
8: $R \leftarrow \emptyset$	Variables reachable via active path				
9: > Starting from X traverse relevant paths that are active.					
10: while $L \neq \emptyset$ do	ile $L \neq \emptyset$ do \triangleright While variables to be checked				
11: Select (d, v) in L					
12: $L \leftarrow L - \{(d, v)\}$					
13: if $(d, v) \notin V$ then	\triangleright If v has not been visited from direction d				
14: If $v \notin Y$ then					
15: $R \leftarrow R \cup \{v\}$	$\triangleright v$ is reachable				
$16: \qquad V \leftarrow V \cup \{(d,v)\}$	\triangleright Mark v as visited from direction d				
17: if $d = \uparrow$ and $v \notin Y$ then					
18: for $v_i \in Pa(v)$ do	$\triangleright v$ is open serial				
19: if $v_i \in X Y Z^{op}$ then	Only explore relevant paths				
20: $L \leftarrow L \cup \{(\uparrow, v_i)\}$					
21: for $v_i \in Ch(v)$ do	$\triangleright v$ is open divergent				
if $v_i \in XYZ^{ap}$ then \triangleright Only explore relevant path					
23: $L \leftarrow L \cup \{(\downarrow, v_i)\}$					
24: else if $d = \downarrow$ then					
25: if $v \notin Y$ then					
26: for $v_i \in Ch(v)$ do	$\triangleright v$ is open serial				
27: If $v_i \in X Y Z^{ap}$ then	> Only explore relevant paths				
28: $L \leftarrow L \cup \{(\downarrow, v_i)\}$	}				
29: if $v \in A$ then					
30: for $v_i \in Pa(v)$ do	$\triangleright v$ is open convergent				
31: If $v_i \in X Y Z^{op}$ then	> Only explore relevant paths				
$L \leftarrow L \cup \{(\uparrow, v_i)\}$	3				
33: return R					
34: end procedure					

Algorithm 1 Given an independence I(X, Y, Z), RP-REACHABLE traverses all active paths from

EXPERIMENTAL RESULTS

savings over

				-
BN	Vars	REACHABLE	RP-REACHABLE	REACHABLE
child	20	1.27E-04	1.14E-04	10%
insurance	27	1.93E-04	1.77E-04	8%
water	32	1.54E-04	1.38E-04	10%
mildew	35	1.62E-04	1.70E-04	-5%
alarm	37	1.39E-04	1.42E-04	-2%
barley	48	2.51E-04	2.40E-04	4%
hailfinder	56	1.70E-04	1.52E-04	11%
hepar2	70	3.14E-04	1.95E-04	38%
win95pts	76	1.21E-04	9.90E-05	18%
pathfinder	109	4.84E-04	1.19E-04	75%
munin1	186	5.70E-04	2.60E-04	54%
andes	223	8.21E-04	6.81E-04	17%
diabetes	413	2.38E-03	2.23E-03	6%
pigs	441	3.67E-04	1.11E-04	70%
link	724	1.20E-03	3.70E-04	69%
munin2	1003	7.66E-04	1.95E-04	75%
munin4	1038	1.57E-03	2.47E-04	84%
munin	1041	1.53E-03	2.44E-04	84%
munin3	1041	1.77E-03	2.45E-04	86%
Average Time		6.89E-04	3.23E-04	53%

EXPERIMENTAL RESULTS

- RP-REACHABLE was faster than REACHABLE in 17 out of 19 BNs
- RP-REACHABLE was faster than REACHABLE by 53% on average

TEACHING D-SEPARATION

- only test relevant paths
- the path (a,d), (d,g) is **active**
- the path (a,d), (d,b), (b,e), (e,g) is **blocked**

EXAMPLE: IRRELEVANT PATH

- Is the path (a,c), (c,f), (f,h), (h,g) active or blocked?
- This path is necessarily blocked

TEACHING D-SEPARATION

- only test relevant paths
- the path (a,d), (d,g) is **active**
- the path (a,d), (d,b), (b,e), (e,g) is **blocked**

CONCLUSION

- rp-separation is a new method for testing independencies in BNs
- considers the intersection of the active and relevant parts of a BN
- faster in 17 out of 19 BNs by 53% on average
- may be useful in teaching d-separation