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BAYESIAN NETWORKS

A Bayesian Network (BN) consists of: 

• a directed acyclic graph (DAG) 

• a matching set of conditional probability 
tables (CPTs) 

The product of the CPTs is a join probability 
distribution (JPD) P(U)



P(U) = P(a) • P(b|a) • P(c|a) • P(d|b,c) • … • P(m|g,l) 

BAYESIAN NETWORK EXAMPLE



LAZY PROPAGATION



• Madsen and Jensen (AIJ 1999) 

• BN variables are clustered into nodes 

• Nodes are organized as a join tree 

• Each BN CPT is assigned to a join tree node 

• Messages are propagated systematically
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MESSAGE CONSTRUCTION

b c e f g h i j l m d=0
M

M =
X

b,c,e,f,g,h

P (b, c) · P (d = 0|b, c) · P (e|d = 0) · P (f |d = 0, e)

·P (g|e) · P (h|e) · P (i|d = 0, h) · P (j|i) · P (m|g, l)

message =
X

N�N 0

Factorization at N



• LP constructs: 

• the domain graph G1 of the factorization 

• the moralization G1m of G1 

• LP tests whether the evidence separates the 
variables to be marginalized from the separator 

• if separated, the potential is irrelevant

DETECTING IRRELEVANT POTENTIALS



BUILD DOMAIN GRAPH G1



BUILD MORALIZATION GRAPH G1m



TEST INDEPENDENCE 
FOR EACH POTENTIAL

• For P(b,c), test whether evidence d separates 
b and c from the separator S = {i,j,l,m}

• Thus, P(b,c) is irrelevant



• LP constructs: 

• the domain graph G2 of the relevant potentials 

• the moralization G2m of G2 

• obtain an elimination ordering from G2m

DETERMINING  
ELIMINATION ORDERINGS



BUILD DOMAIN GRAPH G2

F = {P (e|d = 0), P (g|e), P (h|e), P (i|d = 0, h), P (j|i), P (m|g, l)}



BUILD MORALIZATION GRAPH G2m



FIND ELIMINATION ORDERING

• elimination ordering: g, e, h



NOW LP CAN BUILD THE MESSAGE

M =
X

e,g,h

P (e|d = 0) · P (g|e) · P (h|e) · P (i|d = 0, h) · P (j|i) · P (m|g, l)

= P (j|i) ·
X

h

P (i|d = 0, h) ·
X

e

P (e|d = 0) · P (h|e) ·
X

g

P (g|e) · P (m|g, l)

P (j|i) · P (i,m|d = 0, l)= P (j|i) ·
X

h

P (i|d = 0, h) ·
X

e

P (e|d = 0) · P (h|e) ·
X

g

P (g|e) · P (m|g, l)(1)



SIMPLE PROPAGATION



DARWINIAN NETWORKS

• Simple Propagation arose from our work on 
Darwinian Networks (AI 2015) 

• clever way to view CPTS

P (g|e, f)



MULTIPLICATION IS MERGE

P (c|h) · P (e|c, d) = P (c, e|d, h)P (c|h) · P (e|c, d) = P (c, e|d, h)P (c|h) · P (e|c, d) = P (c, e|d, h)



MARGINALIZATION IS  
REPLICATION AND NATURAL SELECTION

X

c

P (c, e|d, h) = P (e|d, h)



SIMPLE PROPAGATION
SP only uses the “one in, one out” property: 

a potential with one non-evidence variable in the separator 
and another not in the separator



SIMPLE PROPAGATION

Evidence is d = 0 
 
Variable g is outside of S and variables l and m are in S 



SIMPLE PROPAGATION

Eliminating variable g yields population p(m|e, l) 



SIMPLE PROPAGATION

Now, variable e is out



SIMPLE PROPAGATION

Eliminating variable e yields p(h, m|d = 0, l)



SIMPLE PROPAGATION

Finally, variable h is out



SIMPLE PROPAGATION

Eliminating variable h yields population p(i, m|d = 0, l)

P (j|i) · P (i,m|d = 0, l) (1)



BN Vars LP SP Saving
Water 32 0.06 0.05 17%
Oow 33 0.07 0.06 14%
Oow_Bas 33 0.04 0.03 25%
Mildew 35 0.05 0.04 20%
Oow_Solo 40 0.07 0.06 14%
Hkv2005 44 0.23 0.27 -17%
Barley 48 0.09 0.1 -11%
Kk 50 0.09 0.09 0%
Ship 50 0.16 0.17 -6%
Hailfinder 56 0.02 0.02 0%
Medianus 56 0.04 0.03 25%
3Nt 58 0.02 0.01 50%
Hepar_Ii 70 0.03 0.03 0%
Win95Pts 76 0.03 0.03 0%
System_V57 85 0.06 0.05 17%
Fwe_Model8 109 0.14 0.15 -7%
Pathfinder 109 0.12 0.11 8%
Adapt_T1 133 0.04 0.04 0%
Cc145 145 0.1 0.08 20%
Munin1 189 0.54 0.75 -39%
Andes 223 0.15 0.13 13%
Cc245 245 0.2 0.18 10%
Diabetes 413 0.34 0.31 9%
Adapt_T2 671 0.24 0.22 8%
Amirali 681 0.45 0.41 9%
Munin2 1003 0.49 0.45 8%
Munin4 1041 0.61 0.57 7%
Munin3 1044 0.66 0.64 3%

• Experiments conducted on 
optimal JTs built from real-
world and benchmark BNs 

• SP was faster in 18/28 

• SP tied LP in 5/28 

• LP was faster in 5/28 



LP ANALYSIS

• Left-to-Right viewpoint



SP ANALYSIS

• Right-to-Left viewpoint



SP ANALYSIS

• Right-to-Left viewpoint



EXPERIMENTAL RESULTS



SP HEURISTICS

• SP is a new BN inference algorithm 

• There may be more than one potential satisfying the  
“one in, one out” property



SP HEURISTICS

• Increasing variables in X (Inc X) 

• Decreasing variables in X (Dec X) 

• Increasing variables of X in S (Inc in S) 

• Decreasing variables of X in S (Dec in S) 

• Increasing variables in X size (Inc X Size) 

• Decreasing variables in X size (Dec X Size) 

• Increasing variables of X in S size (Inc in S Size) 

• Decreasing variables of X in S size (Dec in S Size).





ANALYSIS

• Our experimental results suggest that SP does not 
require elimination orderings, provided that an 
optimal (or close to) join tree is built from the real-
world BNs 

• It is possible that elimination orderings are needed 
for larger BNs or when non-optimal join trees are 
used, since SP’s performance degrades 
dramatically when applied on non-optimal join trees 
(Madsen et al., 2016 Canadian AI)



CONCLUSION

• SP is a new BN inference algorithm 

• “one in, one out” property 

• SP is faster than LP in optimal join trees 

• Our heuristics were slower than choosing potentials 
arbitrarily


