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Causal manipulation on probability trees

• more general than interventions on DAGs

• easily done in symbolic framework1

1Adnan Darwiche. A differential approach to inference in Bayesian
networks. J. ACM, 50(3):280–305 (electronic), 2003.
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Probability trees

• event tree graphs

• edge labels (probabilities)
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Staged probability trees

probability tree + conditional independence assumptions

highly useful in asymmetric problems

• model selection techniques

• propagation algorithms

• statistical equivalence classes
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Interventions (graphically)

Impose policy forcing students to live in Coventry:
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causal interventions2  projections onto a subtree

2Peter Thwaites. Causal Identifiability via Chain Event Graphs. Artificial
Intelligence, 195:291–315, 2013.
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More flexible than DAGs

Staged trees contain discrete Bayesian networks as a special case

City

Landlord

Move house Leave city

do(Cov.)
Uni

but are more general and more expressive!
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Two questions

• What if we want to do causal manipulations in staged trees
without referring to a graph?

• What if there is a sequence of manipulations we want to
perform consecutively?
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Replacing the graph by a polynomial

Every staged tree is in one-to-one correspondence with a nested
polynomial:
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cT (θ) = θ0 + θ1θ3 + θ1θ4 + θ2θ3θ5θ7 + θ2θ3θ5θ8 + θ2θ3θ6 + θ2θ4

= θ0 + θ1(θ3 + θ4) + θ2(θ3(θ5(θ7 + θ8) + θ6) + θ4)
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Interventions (symbolically)

Manipulate a tree using a differentiation operation on this
polynomial:
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Advantages of the symbolic approach

Interventions on the polynomial are more general than vertex
manipulations!
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Local differentiation operation

Replace a staged tree by a polynomial

cT (θ) =
∑

(v0,v1)∈E(v0)
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(
· · ·
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)))

and perform a local differentiation on that:∑
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Example: two interventions

Differentiate locally on florets:
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Advantages of this new differentiation

• can do sequence of interventions

• does not rely on graphical representation  flexible and very
general

• used only algebraic description of a parametric model: method
can be used in models far more general than staged trees
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Thank you very much for your attention!
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