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Causal manipulation on probability trees

e more general than interventions on DAGs

e easily done in symbolic framework!

! Adnan Darwiche. A differential approach to inference in Bayesian
networks. J. ACM, 50(3):280-305 (electronic), 2003.

15



Probability trees

3/15



Probability trees

e event tree graphs

/15



Probability trees

e event tree graphs
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Staged probability trees

probability tree + conditional independence assumptions
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Staged probability trees

probability tree + conditional independence assumptions
highly useful in asymmetric problems
e model selection techniques

e propagation algorithms

e statistical equivalence classes
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Example

Students at Warwick university. . .
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Interventions (graphically)
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2Peter Thwaites. Causal Identifiability via Chain Event Graphs. Artificial
Intelligence, 195:291-315, 2013.
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Interventions (graphically)

Impose policy forcing students to live in Coventry:

grumpy 63

fﬂ.e"d/y >

2Peter Thwaites. Causal Identifiability via Chain Event Graphs. Artificial
Intelligence, 195:291-315, 2013.
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Interventions (graphically)

Impose policy forcing students to live in Coventry:

grumpy 63
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causal interventions® ~~ projections onto a subtree

2Peter Thwaites. Causal Identifiability via Chain Event Graphs. Artificial
Intelligence, 195:291-315, 2013.
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More flexible than DAGs

Staged trees contain discrete Bayesian networks as a special case

Uni —— City dO(CoV)
Move house —— Leave city

Landlord

but are more general and more expressive!
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e What if we want to do causal manipulations in staged trees
without referring to a graph?
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Two questions

e What if we want to do causal manipulations in staged trees
without referring to a graph?

e What if there is a sequence of manipulations we want to
perform consecutively?
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Replacing the graph by a polynomial
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Replacing the graph by a polynomial

Every staged tree is in one-to-one correspondence with a nested
polynomial:
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Replacing the graph by a polynomial

Every staged tree is in one-to-one correspondence with a nested
polynomial:
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Replacing the graph by a polynomial

Every staged tree is in one-to-one correspondence with a nested
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Interventions (symbolically)

Manipulate a tree using a differentiation operation on this
polynomial:
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Interventions (symbolically)

Manipulate a tree using a differentiation operation on this
polynomial:
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Interventions (symbolically)

Manipulate a tree using a differentiation operation on this
polynomial:
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Advantages of the symbolic approach
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Advantages of the symbolic approach
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Advantages of the symbolic approach
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Interventions on the polynomial are more general than vertex
manipulations!
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Local differentiation operation

Replace a staged tree by a polynomial

c7(6) = 8(vo, v1) (Z 0(v1,v2) ( B (Z e(vk_l’vk))))

(vo,v1)€E(vo) (v1,v2)EE(v1) (vg—1,0%)EE(vK—1)
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Local differentiation operation

Replace a staged tree by a polynomial

c7(6) = 8(vo, v1) (Z 0(v1,v2) ( B (Z e(vk_l’vk))))

(vo,v1)€E(vo) (v1,v2)EE(v1) (vg—1,0%)EE(vK—1)

and perform a local differentiation on that:
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Example: two interventions
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Example: two interventions

Differentiate locally on florets:
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Example: two interventions

Differentiate locally on florets:
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Advantages of this new differentiation

e can do sequence of interventions
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Advantages of this new differentiation

e can do sequence of interventions

e does not rely on graphical representation ~~ flexible and very
general

e used only algebraic description of a parametric model: method
can be used in models far more general than staged trees
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Thank you very much for your attention!

JMLR: Workshop and Conference Proceedings vol 52, 207-215, 2016 PGM 2016

A Differential Approach to Causality in Staged Trees

Christiane Girgen C.GORGEN @ WARWICK.AC.UK
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Abstract

In this paper, we apply a recently developed differential approach to inference in staged tree mod-
els to causal inference. Staged trees generalise modelling techniques established for Bayesian
networks (BN). They have the advantage that they can depict highly nuanced structure impossible
to express in a BN and also enable us to perform causal manipulations associated with very general
types of interventions on the system. Conveniently, what we call the interpolating polynomial of
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