
Hybrid Copula Bayesian Networks

Hybrid Copula Bayesian Networks

Kiran Karra
kiran.karra@vt.edu

Hume Center
Electrical and Computer Engineering

Virginia Polytechnic Institute and State University

September 7, 2016

mailto:kiran.karra@vt.edu


Hybrid Copula Bayesian Networks

Outline
Introduction

Prior Work
Introduction to Copulas
Copula Bayesian Networks (CBN)
Limitations of CBN Approach

Our Proposed Solution
Hybrid Copulas
Applicability of Hybrid Copulas
Hybrid Copula Bayesian Networks
Accuracy of Hybrid Copula Density Estimation
HCBN Factorization

Experimental Evaluation
Synthetic Data
Real Data

Conclusion



Hybrid Copula Bayesian Networks

Introduction

Introduction

I Graphical models can model datasets as large dimensional
probability distributions.

I Real world data typically consist of both discrete and
continuous random variables.

I Often, simplifying assumptions are made either in modeling
the individual marginal distributions, or the dependency
structure.

I We present a new model for representing mixed random
variables in graphical models using hybrid copulas, based on
Copula Bayesian Networks [Eli10].
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Introduction to Copulas
Sklar’s Theorem[Nel06]

C (FX1(x1), . . . ,FXn(xn)) = F (x1, . . . , xn)

I Any joint distribution can be
generated from its marginal
distributions and copula.

I Allows for heterogeneous
marginals in joint distribution.

I Dependency structure is
independent of marginal
distributions.
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Copula Bayesian Networks (CBN) [Eli10]

I Copula ratio defines
relationship between a child
node and it’s parents.

Rc(FX (x),Fpa(ypa))

=
c(FX (x),Fpa(ypa))

∂KC(1,Fpa(ypa))
∂Fpa(ypa)

I The density χ factorizes
over the graph as

fχ(x) =
∏
i

Rci (FXi
(xi ),Fpai(ypai))fXi

(xi )



Hybrid Copula Bayesian Networks

Prior Work

Limitations of CBN Approach

Limitations of CBN Approach

I Uniqueness of Sklar’s
theorem is only guaranteed
for continuous marginal
distributions.

I Computationally, Gaussian
and Archimedean copula
densities (and many other
families) follow the
grounded property. (i.e.
c(0, v) = c(u, 0) =
c(1, v) = c(v , 1) = 0).

I For discrete RV’s,
FXi (ximax ) = 1 =⇒ Rc =
0.

I ∴ We can’t directly apply
CBNs to mixed data.

I Current approaches for
mixed networks

I Conditional Linear
Gaussian (CLG) Model

I Reverts to
assumptions of
Gaussianity

I Imposes restrictions
on parent/child node
variable types

I Mixture of Truncated
Exponentials (MTE)
Model [MRS01]

I Piecewise fitting of
marginal distributions.
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Hybrid Copulas

Can we use copulas to capture the dependency between arbitrary
continuous and discrete random variables?

I Schweizer and Sklar’s extension
copula [SS74]

I Denuit and Lambert’s
continuing transform,
X∗ = X + (U − 1) [DL05]

I Nešlehová’s transform
X∗ = ψ(X ,U) [Ne7]

I de Leon and Wu’s conditional
distribution approach [dLW11]

I Smith and Khaled’s MCMC
latent variable approach [SK12]

I Apply Nešlehová’s transform
X ∗ = ψ(X ,U) to discrete RVs.

I X∗ corresponds to a unique
copula, C∗.

I C∗ captures and preserves the
dependence and concordance
properties of the underlying
mixed vector X = (X1, . . . ,Xn)
[MQ10, Ne7].
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Applicability of Hybrid Copulas

I Types of Discrete Random
Variables

I Ordinal Random Variables
I Count Random Variables

I Have concept of
dependency between
events in sample
space.

I Categorical Random
Variables

I Do not have concept
of dependency
between events in
sample space.

I Are categorical random
variables allowed in this
model?

I Yes!
I Convert categorical to

ordinal arbitrarily to avoid
defining conditional
distributions.

I Copulas can no longer be
interpreted as dependence
structures.
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Hybrid Copula Bayesian Networks

Hybrid Copula Bayesian Networks

Extend framework of CBN to incorporate discrete and continuous
random variables.

I Construction

1. Preprocess each discrete random variable Xi with the
transformation ψ(Xi ,Ui ).

2. Compute empirical marginal distributions for each node in the
Bayesian network.

3. Estimate structure of Bayesian network. 1

4. Estimate the copula density capturing the dependency between
each node and its parents.

1Iterate between steps 3 and 4 in score based approach.
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Hybrid Copula Bayesian Networks

Copula Density Estimation

Copula family with all continuous
nodes

1. Use copula model selection
algorithms to select copula
family (Gaussian,
Archimedean, etc...).

2. Estimate copula dependency
θ parameter(s) by inverting
τ = f (θ).

Copula family with continuous
and discrete nodes

1. Compute pseudosamples U∗

from modified dataset X∗.

2. Estimate copula density that
captures underlying
dependency properties of X
using beta-kernels [CFS07].

ĉh(u) =

1
M

∑M
m=1

D∏
d=1

β(FXd
(xd (m)), u

h
+1, 1−u

h
+1)
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Accuracy of Hybrid Copula Density Estimation

I As discrete outcomes increase, pseudo observations of
transformed discrete random variables are closer to underlying
copula’s pseudo observations.

I Conversely, as discrete outcomes increase, CLG and MTE
have to define an exponentially growing number of conditional
distributions.

I Hybrid copulas recommended for large numbers of discrete
outcomes. MTE recommended for smaller number.
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HCBN Factorization

fi (xi) =
k∏

l=1

fXl
(xl)×

2∑
jk+1=1

· · ·
2∑

jn=1

(−1)jk+1+···+jn × fX (x) =
D∏
i=1

fi (xi)

C k
i (FX1(x1), . . . ,FXk

(xk), uk+1,jn+1, . . . , un,jn)

uj ,1 = FXj
(x−j ), uj ,2 = FXj

(xj)

C k
i =

∂k

∂u1∂u2 . . . ∂uk
Ci (u1, . . . , un)

=

∫
k+1

. . .

∫
n
ci (u)

I X1, . . . ,Xk are continuous
random variables.

I Xk+1, . . . ,Xn are ordinal or
count discrete random
variables.

I i represents i th family.



Hybrid Copula Bayesian Networks

Experimental Evaluation

Synthetic Data

Experimental Evaluation - Synthetic Data Set Generation

Synthetic BN MC Data Generation
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Synthetic BN MC Simulation Performance Results
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I HCBN framework allows for expressive modeling of large
discrete and continuous RV’s.

I Performance compares favorably to both MTE and CLG
models in synthetic data experiments.

I Good approach when there are high numbers of discrete
outcomes.

I Future Work
I Approximate Inference
I Large scale structure learning taking advantage of copula

theory.
I Further experimentation with real-life datasets.

I Code available at
https://github.com/stochasticresearch/copula

I Questions?

https://github.com/stochasticresearch/copula
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