An exact approach to learning Probabilistic Relational Model

Nourhene Ettouzi ${ }^{1}$, Philippe Leray ${ }^{2}$, Montassar Ben Messaoud ${ }^{1}$

${ }^{1}$ LARODEC, ISG Tunis, Tunisia
${ }^{2}$ LINA, Nantes University, France

International Conference on Probabilistic Graphical Models Lugano (Switzerland), Sept. 6-9, 2016

Motivations

- Probabilistic Relational Models (PRMs) extend Bayesian networks to work with relational databases rather than propositional data

Motivations

- Our goal : PRM structure learning from a relational database
- Only few works, inspired from classical BNs learning approaches, were proposed to learn PRM structure - an exact approach to learn (guaranteed optimal) PRMs

Motivations

- Only few works, inspired from classical BNs learning approaches, were proposed to learn PRM structure

Approaches		BNs	PRMs
Score-based	Approximate	\checkmark	\checkmark
	Exact	\checkmark	\mathbf{X}
Constraint-based		\checkmark	\checkmark
		\checkmark	\checkmark

Motivations

Approaches		BNs	PRMs
Score-based	Approximate	\checkmark	\checkmark
	Exact	\checkmark	\mathbf{X}
	\checkmark	\checkmark	

Our proposal

- an exact approach to learn (guaranteed optimal) PRMs

Outline

(1) Learning optimal BN - Score-based approaches

(2) Learning PRM

- Definitions
- Probabilistic relational models
- Learning

3 Learning optimal PRM
(4) Conclusion

Exact score-based approaches

Main issue: find the highest-scoring network

(2) optimal search strategy

Exact score-based approaches

Main issue : find the highest-scoring network
(1) decomposable scoring function (BDe, MDL/BIC, AIC, ...)
(3) optimal search strategy

Decomposability

Let us denote V a set of variables. A scoring function is decomposable if the score of the structure, $\operatorname{Score}(B N(\mathcal{V}))$, can be expressed as the sum of local scores at each node.

$$
\operatorname{Score}(B N(\mathcal{V}))=\sum_{X \in \mathcal{V}} \operatorname{Score}(X \mid \operatorname{Pax})
$$

Each local score $\operatorname{Score}(X \mid \operatorname{Pax})$ is a function of one node and its parents

Exact score-based approaches

Main issue: find the highest-scoring network
(1) decomposable scoring function (BDe, MDL/BIC, AIC, ...)
(2) optimal search strategy

- Spanning Tree [Chow et Liu, 1968]
- Mathematical Programming [Cussens, 2012]
- Dynamic Programming [Singh et al., 2005]
- A* search [Yuan et al., 2011]

Exact score-based approaches

Main issue: find the highest-scoring network
(1) decomposable scoring function (BDe, MDL/BIC, AIC, ...)
(2) optimal search strategy

- Spanning Tree [Chow et Liu, 1968]
- Mathematical Programming [Cussens, 2012]
- Dynamic Programming [Singh et al., 2005]
- A* search [Yuan et al., 2011]
- variant of Best First Heuristic search (BFHS) [Pearl, 1984]
- BN structure learning as a shortest path finding problem
- evaluation functions g and h based on local scoring function

A* search for BNs [Yuan et al., 2011]

Order graph: the search space

A* search for BNs [Yuan et al., 2011]

A* search for BNs [Yuan et al., 2011]

A* search for BNs [Yuan et al., 2011]

Parent graph of X1

Outline

(1) Learning optimal BN

- Score-based approaches
(2) Learning PRM
- Definitions
- Probabilistic relational models
- Learning
(3) Learning optimal PRM
(4) Conclusion

Relational schema \mathcal{R}

Definitions

- classes + attributes, X. A denotes an attribute A of a class X

Relational schema \mathcal{R}

Definitions

- classes + attributes, $X . A$ denotes an attribute A of a class X
- reference slots $=$ foreign keys (e.g. Vote.Movie, Vote.User)

Relational schema \mathcal{R}

Definitions

- classes + attributes, $X . A$ denotes an attribute A of a class X
- reference slots $=$ foreign keys (e.g. Vote.Movie, Vote.User)
- inverse reference slots (e.g. User.User ${ }^{-1}$)

Relational schema \mathcal{R}

Definitions

- classes + attributes, $X . A$ denotes an attribute A of a class X
- reference slots $=$ foreign keys (e.g. Vote.Movie, Vote.User)
- inverse reference slots (e.g. User.User ${ }^{-1}$)
- slot chain $=$ a sequence of (inverse) reference slots
- ex: Vote.User.User ${ }^{-1}$.Movie: all the movies voted by a particular user

Probabilistic Relational Models

[Koller \& Pfeffer, 1998]

Definition

A PRM Π associated to \mathcal{R} :

- a qualitative dependency structure \mathcal{S} (with possible long slot chains and aggregation functions)
- a set of parameters $\theta_{\mathcal{S}}$

Aggregators

- Mode(Vote.User.User ${ }^{-1}$.Movie.genre) \rightarrow Vote.rating
- movie rating from one user can be dependent with the most frequent genre of movies voted by this user

PRM structure learning

Relational variables

- finding new variables potentially dependent with each target variable, by exploring the relational schema and the possible aggregators
- ex: Vote.Rating, Vote.user.user ${ }^{-1}$.Rating, Vote.movie.movie ${ }^{-1}$.Rating, ...
\Rightarrow adding another dimension in the search space
\Rightarrow limitation to a given maximal slot chain length

PRM structure learning

Relational variables

\Rightarrow adding another dimension in the search space
\Rightarrow limitation to a given maximal slot chain length

Constraint-based methods

- relational PC [Maier et al., 2010] relational CD [Maier et al., 2013], rCD light [Lee and Honavar, 2016]

PRM structure learning

Relational variables

\Rightarrow adding another dimension in the search space
\Rightarrow limitation to a given maximal slot chain length

Constraint-based methods

- relational PC [Maier et al., 2010] relational CD [Maier et al., 2013], rCD light [Lee and Honavar, 2016]

Score-based methods

- Greedy search [Getoor et al., 2007]
relational MMHC [Ben Ishak et al., 2015]

PRM structure learning

Relational variables

\Rightarrow adding another dimension in the search space
\Rightarrow limitation to a given maximal slot chain length

Constraint-based methods

- relational PC [Maier et al., 2010] relational CD [Maier et al., 2013], rCD light [Lee and Honavar, 2016]

Score-based methods
 - Greedy search [Getoor et al., 2007]

Hybrid methods

- relational MMHC [Ben Ishak et al., 2015]

Outline

(1) Learning optimal BN

- Score-based approaches
(2) Learning PRM
- Definitions
- Probabilistic relational models
- Learning
(3) Learning optimal PRM
(4) Conclusion

Relational BFHS

- Strategy similar to [Yuan et al., 2011], but adapted to the relational context

Relational BFHS

- Strategy similar to [Yuan et al., 2011], but adapted to the relational context

Two key points

- search space: how to deal with "relational variables" ? \Rightarrow relational order graph
- parent determination : how to deal with slot chains, aggregators, and possible "multiple" dependencies between two attributes ?
\Rightarrow relational parent graph
\Rightarrow evaluation functions

Relational order graph

Definition

- lattice over $2^{\mathcal{X} . \mathcal{A}}$, powerset of all possible attributes
- no big change wrt. BNs

Relational parent graph

Definition (one for each attribute X.A)

- lattice over the candidate parents for a given maximal slot chain length (+ local score value)
- the same attribute can appear several times in this graph
- one attribute can appear in its own parent graph, e.g. gender

Evaluation functions

Relational cost so far

(more complex than BNs)

- $g(U \rightarrow U \cup\{X . A\})=$ interest of having a set of attributes U (and $X . A$) as candidate parents of $X . A$
- $=\operatorname{BestScore}\left(X . A \mid\left\{C P a_{i} / \mathcal{A}\left(C P a_{i}\right) \in \mathcal{A}(U) \cup\{A\}\right\}\right)$

Evaluation functions

Relational cost so far

- $g(U \rightarrow U \cup\{X . A\})=$ interest of having a set of attributes U (and $X . A$) as candidate parents of $X . A$
- $=\operatorname{BestScore}\left(X . A \mid\left\{C P a_{i} / \mathcal{A}\left(C P a_{i}\right) \in \mathcal{A}(U) \cup\{A\}\right\}\right)$

$$
h(U)=\sum_{X} \sum_{A \in \mathcal{A}(X) \backslash \mathcal{A}(U)} B \operatorname{sestScore}(X . A \mid C P a(X . A))
$$

Relational BFHS : example

(a) The shortest path resulting from A^{*} search
(b) An optimal PRM related to the relational schema

Conclusion and Perspectives

Visible face

An exact approach to learn optimal PRM, inspired from previous works dedicated to Bayesian networks [Yuan et al., 2011; Malone, 2012; Yuan et al., 2013] whose performance was already proven

Conclusion and Perspectives

Visible face

An exact approach to learn optimal PRM, inspired from previous works dedicated to Bayesian networks [Yuan et al., 2011; Malone, 2012; Yuan et al., 2013] whose performance was already proven

To do list

- Implement this approach on our software platform PILGRIM
- Provide an anytime PRM structure learning algorithm, following the ideas presented in [Aine et al., 2007; Malone et al., 2013] for BNs

Conclusion and Perspectives

Visible face

An exact approach to learn optimal PRM, inspired from previous works dedicated to Bayesian networks [Yuan et al., 2011; Malone, 2012; Yuan et al., 2013] whose performance was already proven

To do list

- Implement this approach on our software platform PILGRIM
- Provide an anytime PRM structure learning algorithm, following the ideas presented in [Aine et al., 2007; Malone et al., 2013] for BNs

Thank you for your attention

