Evidence Evaluation:
 a Study of Likelihoods and Independence

Silja Renooij

Department of Information and Computing Sciences
Utrecht University, The Netherlands

Motivation

- Who can and may judge what?
- How are multiple pieces of evidence combined?

Multiple pieces of evidence

$$
\begin{aligned}
& \operatorname{Pr}\left(e_{1} \ldots e_{n} \mid h\right)= \\
& \quad \operatorname{Pr}\left(e_{n} \mid e_{1} \ldots e_{n-1} h\right) \ldots \cdot \operatorname{Pr}\left(e_{2} \mid e_{1} h\right) \cdot \operatorname{Pr}\left(e_{1} \mid h\right)
\end{aligned}
$$

Multiple pieces of evidence

$\operatorname{Pr}\left(e_{1} \ldots e_{n} \mid h\right)=$ correct: $\operatorname{Pr}\left(e_{n} \mid e_{1} \ldots e_{n-1} h\right) \cdot \ldots \cdot \operatorname{Pr}\left(e_{2} \mid e_{1} h\right) \cdot \operatorname{Pr}\left(e_{1} \mid h\right)$ naive: $\operatorname{Pr}\left(e_{n} \mid \quad h\right) \cdot \ldots \cdot \operatorname{Pr}\left(e_{2} \mid h\right) \cdot \operatorname{Pr}\left(e_{1} \mid h\right)$

Multiple pieces of evidence

$\operatorname{Pr}\left(e_{1} \ldots e_{n} \mid h\right)=$
correct: $\operatorname{Pr}\left(e_{n} \mid e_{1} \ldots e_{n-1} h\right) \cdot \ldots \cdot \operatorname{Pr}\left(e_{2} \mid e_{1} h\right) \cdot \operatorname{Pr}\left(e_{1} \mid h\right)$
naive: $\operatorname{Pr}\left(e_{n} \mid \quad h\right) \cdot \ldots \cdot \operatorname{Pr}\left(e_{2} \mid \quad h\right) \cdot \operatorname{Pr}\left(e_{1} \mid h\right)$

What is the effect of incorrectly assuming independence?

- Previous work ${ }^{1}$: effect on Naive Bayes classification
- This paper: effect on likelihood(ratio)

[^0]
Importance of likelihood-ratio LR

Sensitivity functions as alternative nomograms:

$$
\operatorname{Pr}(h \mid \mathbf{e})=\frac{\mathrm{LR} \cdot \operatorname{Pr}(h)}{(\mathrm{LR}-1) \cdot \operatorname{Pr}(h)+1}
$$

$$
(\mathrm{LR}=\operatorname{Pr}(\mathbf{e} \mid h) / \operatorname{Pr}(\mathbf{e} \mid \bar{h}))
$$

Dependencies through parameter changes

Recall: likelihood-ratio $L R=\operatorname{Pr}(\mathrm{e} \mid h) / \operatorname{Pr}(\mathrm{e} \mid \bar{h})$

$$
\text { Let } \begin{aligned}
x & =\operatorname{Pr}\left(e_{i} \mid \boldsymbol{\pi}_{i} h\right) \text { and } \\
y & =\operatorname{Pr}\left(e_{j} \mid \boldsymbol{\pi}_{j} \bar{h}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{LR}(x, y) & =\frac{c_{1} \cdot x}{c_{2} \cdot y}, c_{i}>0 \\
\frac{\partial}{\partial y} \operatorname{LR}(x, y) & =-\frac{x}{y} \cdot \frac{\partial}{\partial x} \operatorname{LR}(x, y)
\end{aligned}
$$

E.g. derivative in $(0.70,0.13)$ in direction $(1,1)$: -36.16 .

Dependencies through parameter changes

Recall: likelihood-ratio $L R=\operatorname{Pr}(\mathrm{e} \mid h) / \operatorname{Pr}(\mathrm{e} \mid \bar{h})$

$$
\text { Let } \begin{aligned}
x & =\operatorname{Pr}\left(e_{i} \mid \boldsymbol{\pi}_{i} h\right) \text { and } \\
y & =\operatorname{Pr}\left(e_{j} \mid \boldsymbol{\pi}_{j} \bar{h}\right)
\end{aligned}
$$

Then

$$
\operatorname{LR}(x, y)=\frac{c_{1} \cdot x}{c_{2} \cdot y}, c_{i}>0
$$

$$
\frac{\partial}{\partial y} \mathrm{LR}(x, y)=-\frac{x}{y} \cdot \frac{\partial}{\partial x} \mathrm{LR}(x, y)
$$

E.g. derivative in $(0.70,0.13)$ in direction $(1,1):-36.16$.

Neglecting one dependency can be compensated by neglecting another.

Error in likelihood: theoretical bound

$$
\operatorname{Err}(\mathbf{e} \mid h)=\operatorname{Pr}(\mathbf{e} \mid h)-\prod_{i=1}^{n} \operatorname{Pr}\left(e_{i} \mid h\right)
$$

Error due to neglecting a single dependency between (binary) e_{1} and e_{2}, when $n \geq 2$ pieces of evidence:

Error in likelihood: theoretical bound

$$
\operatorname{Err}(\mathbf{e} \mid h)=\operatorname{Pr}(\mathbf{e} \mid h)-\prod_{i=1}^{n} \operatorname{Pr}\left(e_{i} \mid h\right)
$$

Error due to neglecting a single dependency between (binary) e_{1} and e_{2}, when $n \geq 2$ pieces of evidence:

Error in likelihood: experimental study

- 10 structures with up to 4 pieces of evidence
- 1000 distributions $\operatorname{Pr}\left(E_{1} \ldots E_{4} \mid h\right)$ per structure
- arc-removal: $\operatorname{Pr}\left(e_{j} \mid e_{i} \mathbf{z}\right)=\operatorname{Pr}\left(e_{j} \mid \overline{e_{i}} \mathbf{z}\right)$

Results: verify the theoretical bound

- $\max _{i=1}^{1000}\left|\operatorname{Err}\left(e_{1} e_{2} \mid h\right)\right|=0.234<0.25$
- $\operatorname{avg}_{i=1}^{1000}\left|\operatorname{Err}\left(e_{1} e_{2} \mid h\right)\right|=0.057 \quad=$ less than 6%

Results: verify the theoretical bound

- $\max _{i=1}^{1000}\left|\operatorname{Err}\left(e_{1} e_{2} \mid h\right)\right|=0.234<0.25$
- $\operatorname{avg}_{i=1}^{1000}\left|\operatorname{Err}\left(e_{1} e_{2} \mid h\right)\right|=0.057 \quad=$ less than 6%
x-axis? We'll get to that later. . .

Results (max, avg) for $\left|\operatorname{Err}\left(e_{1} e_{2} e_{3} \mid h\right)\right|$

(0.261, 0.056)

(0.256, 0.048)

(0.273, 0.043)

Results (max, avg) for $\left|\operatorname{Err}\left(e_{1} e_{2} e_{3} \mid h\right)\right|$

(0.261, 0.056)

Average decreases with fewer independence violations (though max doesn't).

Results (max, avg) for $\left|\operatorname{Err}\left(e_{1} e_{2} e_{3} e_{4} \mid h\right)\right| I$

Average decreases with fewer independence violations (though max increases).

Results (max, avg) for $\left|\operatorname{Err}\left(e_{1} e_{2} e_{3} e_{4} \mid h\right)\right|$ II

$\mathrm{B}_{4}^{-\{14,24,13,23\}} \operatorname{Err}(\mathrm{e}, \mathrm{h})$

(0.300, 0.030)
(0.288, 0.028)
(0.185, 0.022)

Average decreases with fewer independence violations (and so does max).

Organising the data points

x-axis represents tailored dependency measure:

$$
R_{\mathrm{tot}}^{\operatorname{avg}}(\mathbf{e} \mid h)=\sum_{i j} \operatorname{avg}_{k}\left(\operatorname{Pr}\left(e_{j} \mid e_{i} \mathbf{z}_{k} h\right)-\operatorname{Pr}\left(e_{j} \mid \bar{e}_{i} \mathbf{z}_{k} h\right)\right)
$$

R correlates better with $\operatorname{Err}(\mathbf{e} \mid h)$ than

- mutual information $I\left(E_{i}, E_{j} \mid h\right)$
- Yule's Q statistic

Useful measure for establishing a theoretical bound?

Conclusions

- Sensitivity functions give insight in relation between posterior, LR and prior
- Effects of dependencies can be simulated with parameter changes
- Theoretical result: $\operatorname{Err}\left(e_{1} e_{2} \mid h\right)$ is at most $1 / 4$
- Empirical results (preliminary!):
- $\operatorname{Err}(\mathbf{e} \mid h) \leq 0.3$
- avg $|\operatorname{Err}(\mathbf{e} \mid h)|$ decreases with more evidence and fewer independence violations
- $R_{\text {tot }}^{\text {avg }}$ correlates (somewhat) with $\operatorname{Err}(\mathrm{e} \mid h)$
- Results are relevant for Naive Bayes as well

Future research

- Does upper bound on error hold for larger networks?
- What happens to upper bound under extreme distributions?
- Do monotonicity properties affect upper bound?
- Can we formulate a theoretical bound for more than 2 pieces of evidence, perhaps using the R measure?
- (How does $\operatorname{Err}(\mathrm{e} \mid h)$ affect posterior and/or classification?)

ADDITIONAL SLIDES

Correlations

	correlation with Err (for R, Q) or			
$R_{\text {arg }}^{\text {avg }} \mid$ (for $\left.I\right)$				
$\mathrm{B}_{\mathrm{n}}^{c}$	$R_{\text {tot }}^{\text {sum }}$	$Q_{\text {tot }}$	$I_{\text {tot }}$	
$\mathrm{B}_{2}^{\mathrm{F}}$	0.917	0.917	0.878	0.932
$\mathrm{~B}_{3}^{\mathrm{F}}$	0.726	0.712	0.759	0.471
$\mathrm{~B}_{4}^{\mathrm{F}}$	0.580	0.510	0.400	0.180
$\mathrm{~B}_{3}^{-\{13\}}$	0.816	0.796	0.813	0.554
$\mathrm{~B}_{3}^{-\{23\}}$	0.826	0.789	0.816	0.643
$\mathrm{~B}_{4}^{-\{14\}}$	0.625	0.557	0.429	0.232
$\mathrm{~B}_{4}^{-\{14,24\}}$	0.675	0.614	0.151	0.275
$\mathrm{~B}_{4}^{-\{14,24,13\}}$	0.726	0.659	0.517	0.320
$\mathrm{~B}_{4}^{-\{14,24,23\}}$	0.738	0.658	0.575	0.454
$\mathrm{~B}_{4}^{-\{14,24,13,23\}}$	0.709	0.609	0.678	0.469

Dependency measures

- $I_{i j}=I\left(E_{i}, E_{j} \mid h\right)=$

$$
\sum_{e_{i}^{*} \in \mathbf{v a}\left(E_{i}\right)} \sum_{e_{j}^{*} \in \mathbf{v a}\left(E_{j}\right)} \operatorname{Pr}\left(e_{i}^{*} e_{j}^{*} \mid h\right) \cdot \log \frac{\operatorname{Pr}\left(e_{i}^{*} e_{j}^{*} \mid h\right)}{\operatorname{Pr}\left(e_{i}^{*} \mid h\right) \cdot \operatorname{Pr}\left(e_{j}^{*} \mid h\right)}
$$

- $Q_{i j}=$

$$
\frac{\operatorname{Pr}\left(e_{i} e_{j} \mid h\right) \cdot \operatorname{Pr}\left(\overline{e_{i}} \overline{e_{j}} \mid h\right)-\operatorname{Pr}\left(\overline{e_{i}} e_{j} \mid h\right) \cdot \operatorname{Pr}\left(e_{i} \overline{e_{j}} \mid h\right)}{\operatorname{Pr}\left(e_{i} e_{j} \mid h\right) \cdot \operatorname{Pr}\left(\overline{e_{i}} \overline{e_{j}} \mid h\right)+\operatorname{Pr}\left(\overline{e_{i}} e_{j} \mid h\right) \cdot \operatorname{Pr}\left(e_{i} \overline{e_{j}} \mid h\right)}
$$

Both are summed over all arcs.

[^0]: ${ }^{1}$ a.o. Domingos \& Pazzani (1997); Hand \& Yu (2001); Rish, Hellerstein \& Thathachar (2001); Zhang (2004); Kuncheva \& Hoare (2008)

