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Motivation ‘a

AMIDST

» Aim: Provide scalable solutions to the MAP problem.

» Challenges:
» Data coming in streams at high speed, and
a quick response is required.

» For each observation in the stream, the
most likely configuration of a set of
variables of interest is sought.

» MAP inference is highly complex.

» Hybrid models come along with specific
difficulties.
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Context ‘a

AMIDST

v

The AMIDST project: ~nzalysis of Masslve Data STreams
http://www.amidst.eu

v

Large number of variables

v

Queries to be answered in real time

Hybrid Bayesian networks (involving discrete and continuous
variables)

» Conditional linear Gaussian networks

v
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@® MAP in CLG networks
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Conditional Linear Gaussian networks ‘&
AMIDST

P(Y) = (0.5,0.5)
@ P(S) = (0.1,0.9)
f(w]Y =0)=N(w; -1,1)

(
flw]Y =1) =N (w;2,1)
f(tlw,S =0)=N(t;—w,1)
(

(u

f(tlw,S=1)=N(t;w,1)

f(ulw) = N(u;w, 1)
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Querying a Bayesian network ‘g

AMIDST

> Belief update: Computing the posterior distribution of a variable:

Z/ p(x, xg)dxc

Xc

XD
P(Xi|XE) =
Z/ P(X,XE)dXC’.
X,

Xp; i

> Maximum a posteriori (MAP): For a set of target variables X/, seek
x; = argmax p(xi X = xe)
Xy
where p(x;|X g = xg) is obtained by first marginalizing out from
p(x) the variables not in X; and not in Xg

> Most probable explanation (MPE): A particular case of MAP where
X includes all the unobserved variables

8th Int. Conf. on Probabilistic Graphical Models, Lugano, Sept. 6—9, 2016



Querying a Bayesian network ‘g

AMIDST

> Belief update: Computing the posterior distribution of a variable:

Z/ p(x, xg)dxc

Xc

XD
P(Xi|XE) =
Z/ P(X,XE)dXC’.
X,

Xp; i

s A

> Maximum a posteriori (MAP): For a set of target variables X/, seek

xj = argmax p(x/|Xg = x)

where p(x;|X g = xg) is obtained by first marginalizing out from
p(x) the variables not in X; and not in Xg

J

> Most probable explanation (MPE): A particular case of MAP where
X includes all the unobserved variables
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MAP by Hill Climbing &Y

AMIDST

HC _MAP(B,x;,xg,r)

while stopping criterion not satisfied do
x| < GenerateConfiguration(B, x;, xg, r)
if p(x},xe) > p(x/,xg) then

X| < X}
end
end
return x;

8th Int. Conf. on Probabilistic Graphical Models, Lugano, Sept. 6—9, 2016



MAP by Hill Climbing &5

AMIDST

if P(XuXE) > P(X/,XE
| x; < xj

end
end
return x;

» Max. number of non-improving iterations

» Target prob. threshold

» Max. number of iterations
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MAP by Hill Climbing
AMiIDST

HC _MAP(B,x;,xg,r)
while stopping criterion not satisfied do
x| < GenerateConfiguration(B, x;, xg, r)

p(x},xe) > p(x), XE

X| < X}

end

end

return x; ) )
» Never move to a worse configuration
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Pag

MAP by Hill Climbing
AMiIDST

HC_MAP(B,X[,XE,r)
while stopping criterion not satisfied do
x} < GenerateConfiguration(B, x;, xg, r)

if [ p(x7,xg) B p(x/,xg) then

X| < X
end g — :
» Estimated using importance sampling:
end
return 5 7m0 52
* Iy XE, ) [ Uk
p(x1, xg) = Z p(xi, xg, x™) = Z Wf (x%)
xX*EQx* X*EQx*
p(X[,XE,X*) 1 Z p(X[7XE,X*(i))
:Ef* T ~ _Z—.7
£*(x*) ne £+ (xx)

pt. 6-9, 2016
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MAP by Hill Climbing &5

AMIDST

HC MAP(B X|XE, r)

return x;
> We'll see later
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MAP by Simulated Annealing
AMIDST

SA_ MAP(B,x;,xg,r)
T+ 1000; < 0.90; ¢ >0

while T > ¢ do

x} < GenerateConfiguration(B, x;, xg, r)

Simulate a random number 7 ~ 2/(0, 1)

if p(x7,xe) > p(x;,xg)/(T -In(1/7)) then
X| < X}

end

T+—a- T
end

return x;
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MAP by Simulated Annealing ‘g

AMIDST

SA
< 1000; < 090; >0
while >—=d

x| < GenerateCo

iguration(B, x;, xg, r)

Simulate a random numberg ~ 1/(0, 1)
if p(x7,xe) > p(x;,xg)/(T - 7)) then
X| < X}
end
;_ —a-T » Default values of the temperature parameters
en » T > 1: almost completely random
return x;

» T <« 1: almost completely greedy
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MAP by Simulated Annealing
AMiIDST

SA_ MAP(B,x;,xg,r)

T <+ 1000; <+ 0.90; >0

while T > ¢ do

x} < GenerateConfiguration(B, x;, xg, r)
Simulate a ra ~ U(0,1)

p(xj,xe) > p(x;, xe) /(T - In(1/7))

X}

end \

T+—a-T — X
end ‘ > Accept x7 if its prob. increases

or decreases < T - In(1/7)

return x;
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MAP by Simulated Annealing
AMiIDST

SA_ MAP(B,x;,xg,r)

T <+ 1000; <+ 0.90; >0

while T > ¢ do

x} < GenerateConfiguration(B, x;, xg, r)
Simulate a random number 7 ~ 2/(0, 1)

if p(xT,xEl > p(x;,xg)/(T -In(1/7)) then
X| < X

T+—ao-T

» Cool down the temperature
return x;
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Generating a new configuration of variables ‘g

AMIDST

Only discrete variables
» The new values are chosen at random
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Generating a new configuration of variables ‘a

AMIDST

Hybrid models
» We take advantage of the properties of the CLG distribution
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Generating a new configuration of variables ‘a
AMiDST

Hybrid models
» We take advantage of the properties of the CLG distribution

A variable whose parents are discrete or observed J

P(Y) = (0.5,0.5)

P(S) = (0.1,0.9)

f(w]Y =0)=N(w;-1,1)
@ f(w]Y =1) = N(w;2,1)

f(tlw,S =0)=N(t;—w,1)

f(tlw,S =1)=N(t;w,1)
fulw) = N(u; w, 1)
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Generating a new configuration of variables O&

AMIDST

Hybrid models
» We take advantage of the properties of the CLG distribution
A variable whose parents are discrete or observed J

Return its conditional mean:

f(w]Y =0) = N(w; —1,1)
fwlY =1) = N(w;2,1)
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Generating a new configuration of variables ‘a

AMIDST

Hybrid models
» We take advantage of the properties of the CLG distribution
A variable with unobserved continuous parents J

Simulate a value using

its conditional distribution:

f(tlw,S =0)=N(t;—w,1)
f(tlw,S=1)=N(t;w,1)
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Scalable implementation O&

AMIDST

MAP estimate x;"

->

Evidence x;

-->

Multiple
starting Loc.al
] solutions
points
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Experimental analysis O&

AMIDST

Purpose

Analyze the scalability in terms of

» Speed
» Accuracy
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Experimental analysis )&

AMIDST

Analyze the scalability in terms of
» Speed
» Accuracy

Experimental setup

» Synthetic networks with 200 variables (50% discrete)

» 70% of the variables observed at random

» 10% of the variables selected as target = 20% to be
marginalized out

8th Int. Conf. on Probabilistic Graphical Models, Lugano, Sept. 6-9, 2016



Experimental analysis ‘a
AMiDST

Computing environment
» AMIDST Toolbox with Apache Flink

» Multi-core environment based on a dual-processor AMD
Opteron 2.8 GHz server with 32 cores and 64 GB of RAM,
running Ubuntu Linux 14.04.1 LTS

» Multi-node environment based on Amazon Web Services
(AWS)

NINS
AMiDST ll‘la azon
S riink
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Scalability: run times
AMiIDST

Scalability of MAP in a multi-core node Scalability of MAP in a multi-node cluster

Y
3
=

=

- ——

[S)
S

o
3
S

o

=]
5
S
Jojoe) dn-peadg

B
Jojoey dn-peoadg
Execution time (s)

Execution time (s)
o ow
8 8
8 8

o
o

12 4 16 2% @ 12 4 8 16 % E
Number of nodes (4 vCPUs per node)

Number of cores

method - HC Global -@- HC Local @~ SA Global @ SA Local method - HC Global - HC Local 8- SA Global 6 SA Local

Int. Conf. on Prol Graphical Models,




Scalability: accuracy (Simulated Annealing) ‘g

AMIDST

Simulated Annealing global Simulated Annealing local
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Scalability: accuracy (Hill Climbing) ‘g

AMIDST

Hill Climbing global Hill Climbing local
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Estimated log-probabilities of the MAP configurations found by each algorithm
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Conclusions ‘a

AMIDST

v

Scalable MAP for CLG models in terms of accuracy and run
time
Available in the AMIDST Toolbox

Valid for multi-cores and cluster systems

v

v

v

MapReduce-based design on top of Apache Flink
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AMIDST

Thank you for your attention

You can download our open source Java toolbox:

AMiDST

http://www.amidsttoolbox.com
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