

Scalable MAP inference in Bayesian networks based on a Map-Reduce approach

Darío Ramos-López¹, Antonio Salmerón¹, Rafael Rumí¹, Ana M. Martínez², Thomas D. Nielsen², Andrés R. Masegosa³, Helge Langseth³, Anders L. Madsen^{2,4}

> ¹Department of Mathematics, University of Almería, Spain ²Department of Computer Science, Aalborg University, Denmark ³ Department of Computer and Information Science, The Norwegian University of Science and Technology, Norway ⁴ Hugin Expert A/S, Aalborg, Denmark

Outline

- 1 Motivation
- 2 MAP in CLG networks
- 3 Scalable MAP
- 4 Experimental results
- **5** Conclusions

Outline

- 1 Motivation
- MAP in CLG networks
- Scalable MAP
- 4 Experimental results
- 6 Conclusions

Motivation

▶ Aim: Provide scalable solutions to the MAP problem.

► Challenges:

- Data coming in streams at high speed, and a quick response is required.
- For each observation in the stream, the most likely configuration of a set of variables of interest is sought.
- MAP inference is highly complex.
- Hybrid models come along with specific difficulties.

Context

- ► The AMiDST project: Analysis of MassIve Data STreams http://www.amidst.eu
- Large number of variables
- Queries to be answered in real time
- Hybrid Bayesian networks (involving discrete and continuous variables)
 - ► Conditional linear Gaussian networks

Outline

- Motivation
- 2 MAP in CLG networks
- Scalable MAP
- 4 Experimental results
- 6 Conclusions

Conditional Linear Gaussian networks

$$P(Y) = (0.5, 0.5)$$

$$P(S) = (0.1, 0.9)$$

$$f(w|Y = 0) = \mathcal{N}(w; -1, 1)$$

$$f(w|Y = 1) = \mathcal{N}(w; 2, 1)$$

$$f(t|w, S = 0) = \mathcal{N}(t; -w, 1)$$

$$f(t|w, S = 1) = \mathcal{N}(t; w, 1)$$

$$f(u|w) = \mathcal{N}(u; w, 1)$$

Querying a Bayesian network

Belief update: Computing the posterior distribution of a variable:

$$p(x_i|\mathbf{x}_E) = \frac{\sum_{\mathbf{x}_D} \int_{\mathbf{x}_C} p(\mathbf{x}, \mathbf{x}_E) d\mathbf{x}_C}{\sum_{\mathbf{x}_{D_i}} \int_{\mathbf{x}_{C_i}} p(\mathbf{x}, \mathbf{x}_E) d\mathbf{x}_{C_i}}$$

 \blacktriangleright Maximum a posteriori (MAP): For a set of target variables X_I , seek

$$\boldsymbol{x}_{I}^{*} = \arg\max_{\boldsymbol{x}_{I}} p(\boldsymbol{x}_{I}|\boldsymbol{X}_{E} = \boldsymbol{x}_{E})$$

where $p(x_I|X_E = x_E)$ is obtained by first marginalizing out from p(x) the variables not in X_I and not in X_E

► Most probable explanation (MPE): A particular case of MAP where X_I includes all the unobserved variables

Querying a Bayesian network

Belief update: Computing the posterior distribution of a variable:

$$p(x_i|\mathbf{x}_E) = \frac{\sum_{\mathbf{x}_D} \int_{\mathbf{x}_C} p(\mathbf{x}, \mathbf{x}_E) d\mathbf{x}_C}{\sum_{\mathbf{x}_{D_i}} \int_{\mathbf{x}_{C_i}} p(\mathbf{x}, \mathbf{x}_E) d\mathbf{x}_{C_i}}$$

► Maximum a posteriori (MAP): For a set of target variables X_I, seek

$$\boldsymbol{x}_{I}^{*} = \arg\max_{\boldsymbol{x}_{I}} p(\boldsymbol{x}_{I}|\boldsymbol{X}_{E} = \boldsymbol{x}_{E})$$

where $p(x_I|X_E = x_E)$ is obtained by first marginalizing out from p(x) the variables not in X_I and not in X_E

► Most probable explanation (MPE): A particular case of MAP where X₁ includes all the unobserved variables

Outline

- 1 Motivation
- MAP in CLG networks
- 3 Scalable MAP
- 4 Experimental results
- 6 Conclusions


```
HC_MAP(B,x_I,x_E,r)
while stopping criterion not satisfied do
\begin{array}{c|c} x_I^* \leftarrow \text{GenerateConfiguration}(B, x_I, x_E, r) \\ \text{if} \quad p(x_I^*, x_E) \geq p(x_I, x_E) \text{ then} \\ \mid \quad x_I \leftarrow x_I^* \\ \text{end} \\ \text{end} \\ \text{return} \quad x_I \end{array}
```


return x₁


```
HC _MAP(B,x_I,x_E,r)
while stopping criterion not satisfied do
x_I^* \leftarrow \text{GenerateConfiguration}(B, x_I, x_E, r)
if p(x_I^*, x_E) \ge p(x_I, x_E) then
| x_I \leftarrow x_I^* |
end
end
```

- Max. number of non-improving iterations
- Target prob. threshold
- Max. number of iterations

HC_MAP(
$$B,x_I,x_E,r$$
)
while stopping criterion not satisfied do
$$x_I^* \leftarrow \text{GenerateConfiguration}(B, x_I, x_E, r)$$
if $p(x_I^*, x_E) \ge p(x_I, x_E)$ then
$$x_I \leftarrow x_I^*$$
end
end
return x_I
Never move to a worse configuration

HC_MAP(
$$B,x_I,x_E,r$$
)
while stopping criterion not satisfied do
$$\begin{vmatrix} x_I^* \leftarrow \text{GenerateConfiguration}(B, x_I, x_E, r) \\ \text{if} \quad p(x_I^*, x_E) \geq p(x_I, x_E) \text{ then} \\ x_I \leftarrow x_I^* \\ \text{end} \\ \text{end} \end{aligned}$$

$$\begin{vmatrix} x_I \leftarrow x_I^* \\ \text{end} \end{vmatrix}$$

$$= \text{Estimated using importance sampling:}$$

$$p(x_I, x_E) = \sum_{x^* \in \Omega_{X^*}} p(x_I, x_E, x^*) = \sum_{x^* \in \Omega_{X^*}} \frac{p(x_I, x_E, x^*)}{f^*(x^*)} f^*(x^*)$$

$$= \mathbb{E}_{f^*} \left[\frac{p(x_I, x_E, x^*)}{f^*(x^*)} \right] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{p(x_I, x_E, x^{*(i)})}{f^*(x^{*(i)})},$$


```
HC_MAP(B,x_I,x_E,r)
while stopping criterion not satisfied do
\begin{array}{c} x_I^* \leftarrow \text{GenerateConfiguration}(B,\,x_I,\,x_E,\,r) \\ \text{if } p(x_I^*,x_E) \geq p(x_I,x_E) \text{ then} \\ | x_I \leftarrow x_I^* \\ \text{end} \\ \text{end} \\ \text{return } x_I \\ \end{array}
```



```
SA MAP(B,x_I,x_E,r)
T \leftarrow 1000; \alpha \leftarrow 0.90: \varepsilon > 0
while T > \varepsilon do
   x_i^* \leftarrow GenerateConfiguration(B, x_I, x_E, r)
   Simulate a random number \tau \sim \mathcal{U}(0,1)
   if p(x_I^*, x_E) > p(x_I, x_E)/(T \cdot \ln(1/\tau)) then
   x_1 \leftarrow x_1^*
   T \leftarrow \alpha \cdot T
return x_I
```



```
SA MAP(B,x_1,x_E,r)
T \leftarrow 1000; \alpha \leftarrow 0.90; \varepsilon > 0
while T > \varepsilon do
   x_I^* \leftarrow \text{GenerateConfiguration}(B, x_I, x_E, r)
   Simulate a random number 	au \sim \mathcal{U}(0,1)
   if p(x_{I}^{*}, x_{E}) > p(x_{I}, x_{E})/(T \cdot \ln(1/\tau)) then
      \mathbf{x}_I \leftarrow \mathbf{x}_I^*
   end
   T \leftarrow \alpha \cdot T
                            Default values of the temperature parameters
end

ightharpoonup T \gg 1: almost completely random
return x
                                   T \ll 1: almost completely greedy
```


SA_MAP(
$$B, x_I, x_E, r$$
)
 $T \leftarrow 1\,000; \ \alpha \leftarrow 0.90; \ \varepsilon > 0$
while $T \geq \varepsilon$ do
$$x_I^* \leftarrow \text{GenerateConfiguration}(B, x_I, x_E, r)$$
Simulate a random number $\tau \sim \mathcal{U}(0, 1)$
if $p(x_I^*, x_E) > p(x_I, x_E)/(T \cdot \ln(1/\tau))$ then
$$x_I \leftarrow x_I^*$$
end
$$T \leftarrow \alpha \cdot T$$
end
$$T \leftarrow \alpha \cdot T$$
end
$$return x_I$$
Accept x_I^* if its prob. increases
or decreases $< T \cdot \ln(1/\tau)$


```
SA MAP(B,x_I,x_F,r)
T \leftarrow 1\,000: \alpha \leftarrow 0.90: \varepsilon > 0
while T > \varepsilon do
   x_I^* \leftarrow \text{GenerateConfiguration}(B, x_I, x_E, r)
   Simulate a random number \tau \sim \mathcal{U}(0,1)
   if p(\mathbf{x}_I^*, \mathbf{x}_E) > p(\mathbf{x}_I, \mathbf{x}_E)/(T \cdot \ln(1/\tau)) then
        x_I \leftarrow x_I^*
                                                               Cool down the temperature
return x<sub>1</sub>
```


Only discrete variables

▶ The new values are chosen at random

Hybrid models

▶ We take advantage of the properties of the CLG distribution

Hybrid models

▶ We take advantage of the properties of the CLG distribution

A variable whose parents are discrete or observed

Hybrid models

▶ We take advantage of the properties of the CLG distribution

A variable whose parents are discrete or observed

Return its conditional mean:

$$f(w|Y = 0) = \mathcal{N}(w; -1, 1)$$

$$f(w|Y=1) = \mathcal{N}(w; \frac{2}{2}, 1)$$

Hybrid models

▶ We take advantage of the properties of the CLG distribution

A variable with unobserved continuous parents

Simulate a value using its conditional distribution:

$$f(t|w, S = 0) = \mathcal{N}(t; -w, 1)$$

 $f(t|w, S = 1) = \mathcal{N}(t; w, 1)$

Scalable implementation

Outline

- 1 Motivation
- MAP in CLG networks
- Scalable MAP
- 4 Experimental results
- 6 Conclusions

Experimental analysis

Purpose

Analyze the scalability in terms of

- Speed
- Accuracy

Experimental analysis

Purpose

Analyze the scalability in terms of

- Speed
- Accuracy

Experimental setup

- ► Synthetic networks with 200 variables (50% discrete)
- ▶ 70% of the variables observed at random
- ▶ 10% of the variables selected as target \Rightarrow 20% to be marginalized out

Experimental analysis

Computing environment

- ► AMIDST Toolbox with Apache Flink
- Multi-core environment based on a dual-processor AMD Opteron 2.8 GHz server with 32 cores and 64 GB of RAM, running Ubuntu Linux 14.04.1 LTS
- Multi-node environment based on Amazon Web Services (AWS)

Scalability: run times

Scalability: accuracy (Simulated Annealing)

Estimated log-probabilities of the MAP configurations found by each algorithm

Scalability: accuracy (Hill Climbing)

Estimated log-probabilities of the MAP configurations found by each algorithm

Outline

- Motivation
- MAP in CLG networks
- Scalable MAP
- 4 Experimental results
- **5** Conclusions

Conclusions

- Scalable MAP for CLG models in terms of accuracy and run time
- Available in the AMIDST Toolbox
- ► Valid for multi-cores and cluster systems
- MapReduce-based design on top of Apache Flink

Thank you for your attention

You can download our open source Java toolbox:

http://www.amidsttoolbox.com

Acknowledgments: This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 619209

