

The University of Manchester

Estimating mutual information in under-reported variables

K. Sechidis¹, M. Sperrin², E. Petherick³, G Brown¹

¹School of Computer Science, University of Manchester (UK)

²Centre for Health Informatics, Institute of Population Health, University of Manchester (UK)

³School of Sport, Exercise & Health Sciences, Loughborough University (UK)

Main idea

Estimate the correlation between Maternal Smoking and Low birthweight

Collect accurate measurements: expensive/privacy

Self-reported data, such as Born In Bradford project

Under-reporting (UR) bias

Non-smokers always tell the truth, while smokers may lie

Main idea

Estimate mutual information between

Y: low birth weight of an infant $Y=\{0,1\}$

X: maternal smoking $X=\{0,1\}$

Population value I(X;Y) = 0.12 nats

$$\widehat{I}(X;Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \widehat{p}(x,y) \ln \frac{\widehat{p}(x,y)}{\widehat{p}(x)\widehat{p}(y)}$$

Point estimate I(X;Y) = 0.15 nats

$$SE\left[\widehat{I}(X;Y)\right] = \frac{\sigma_{MI}}{\sqrt{n}} = \frac{1}{\sqrt{n}} \left(\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \left(\ln \frac{p(x,y)}{p(x)p(y)} \right)^2 - I(X;Y)^2 \right)^{\frac{1}{2}}$$
Interval estimate 95% Confidence Interval $I(X;Y) \in [0.10-0.20]$

Interval estimate

Estimate mutual information between

Y: low birth weight of an infant $Y=\{0,1\}$

X: maternal smoking $X=\{0,1\}$

.... but it is more convenient to collect self reported data:

X: the mother reported smoking or not $X = \{0,1\}$

...
$$I(X;Y)$$
 ?

Misclassification bias problem

UR can be seen as a special case of **misclassification bias**Epidemiology: Corrections for the odds-ratio and relative risk

using knowledge over specificities/sensitivities

Specificity: Pr (X=0|X=0,) = 1 Under reported

Sensitivity: Pr(X=1|X=1,) < 1 Scenario

Our work: Correction for mutual information

x: Reported smoking / x: Actual smoking

Biases can be seen as missing data problems

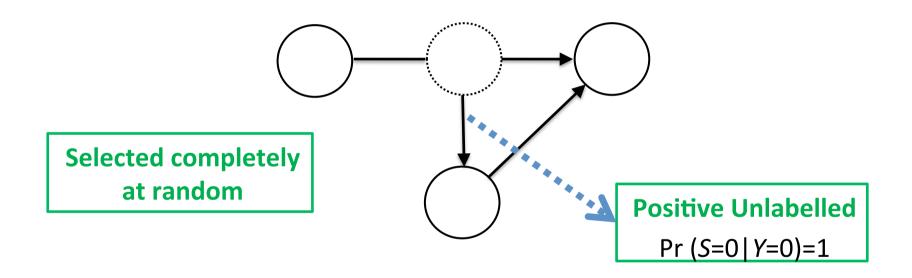
UR can be seen as a special case of **positive-unlabelled** (PU) a restricted semi-supervised binary problem

- <u>Labelled set</u>: only positive examples (Y=1)
 cases reported smoking
- Unlabelled set: either positive/negative (Y=0 or Y=1)
 cases reported non-smoking

using knowledge over prior P(Y=1)

Missingness graphs for PU data

Missingness graphs (Pearl et al. 2013-2015)



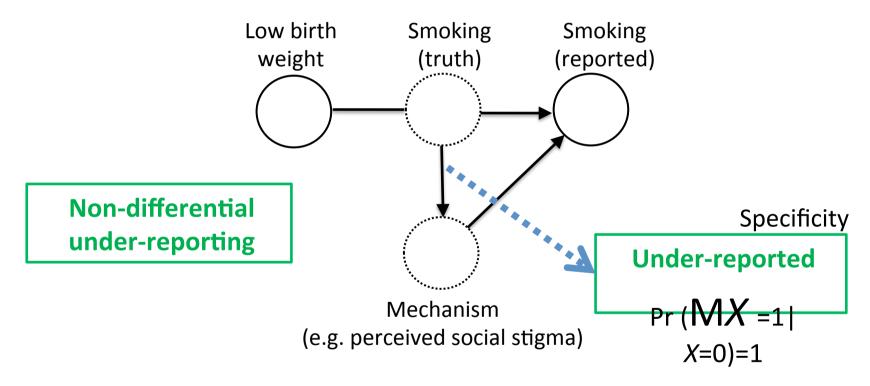
S: abelling mechanism $S=\{0,1\}$: 1 labelled

0 unlabelled

Y:observed variable {0,1,m}

Graph representation for UR data

Misclassification graphs

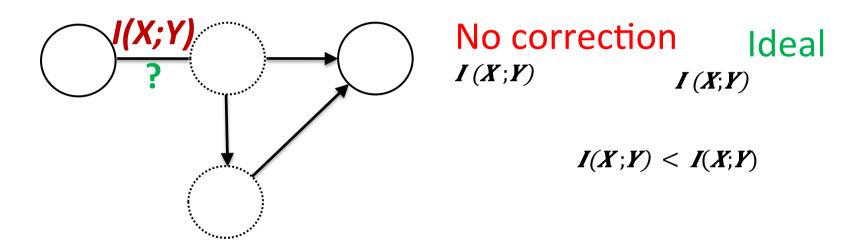


MX: Misclassification mechanism $MX=\{0,1\}$, 1 correctly reported

0 misclassified

X:observed variable {0,1}

Mutual information in UR scenarios



- \square <u>Correct</u> X: Use this model to <u>impute</u> values for the possible misclassified examples: women that reported non-smoking.
- □ Correct MI directly: Derive a corrected estimator that takes into account the under-reporting.

Correcting Mutual Information for UR

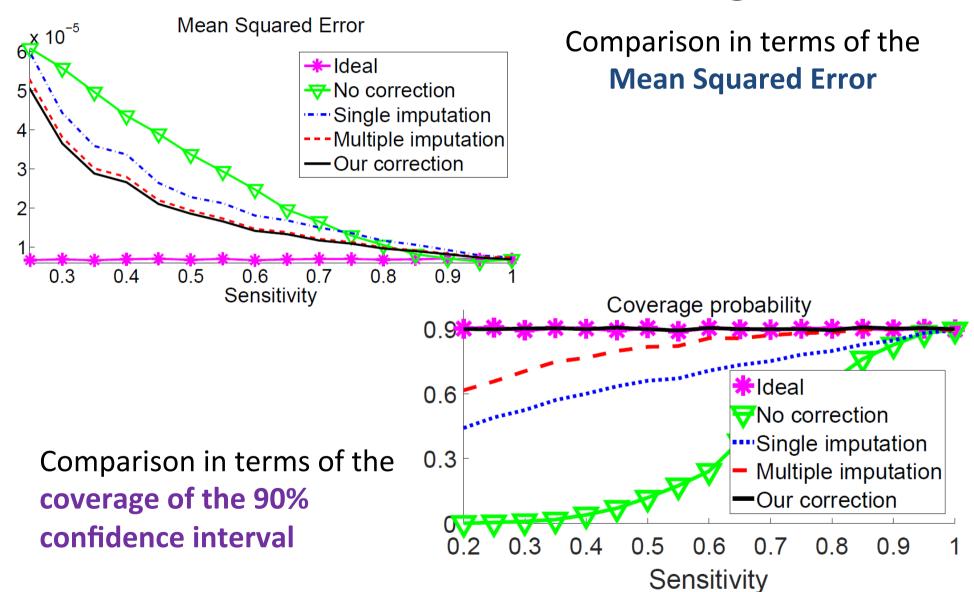
$$\widehat{I}_{\gamma}(\widetilde{X};Y) = \sum_{y \in \mathcal{Y}} \left(\gamma \, \widehat{p}(y|\widetilde{x} = 1) \ln \frac{\widehat{p}(y|\widetilde{x} = 1)}{\widehat{p}(y)} + (\widehat{p}(y) - \gamma \widehat{p}(y|\widetilde{x} = 1)) \ln \frac{\widehat{p}(y) - \gamma \widehat{p}(y|\widetilde{x} = 1)}{\widehat{p}(y) (1 - \gamma)} \right).$$

This estimator is consistent when we have perfect knowledge over the prior: $\gamma = p(x=1)$

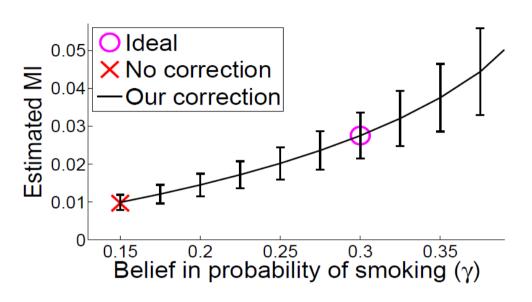
$$I \downarrow \gamma(X;Y) = I(X;Y)$$

Known asymptotic distribution

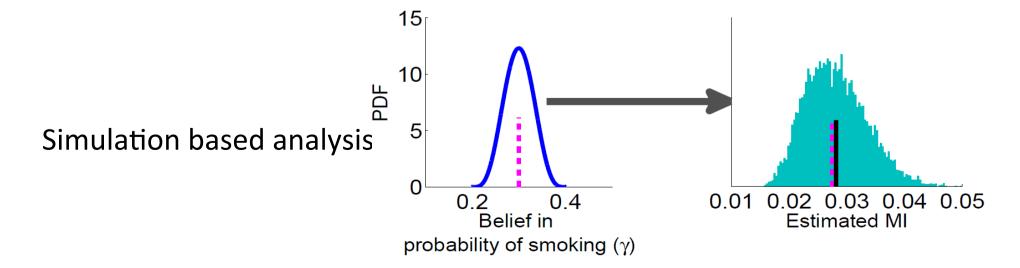
Perfect Prior Knowledge



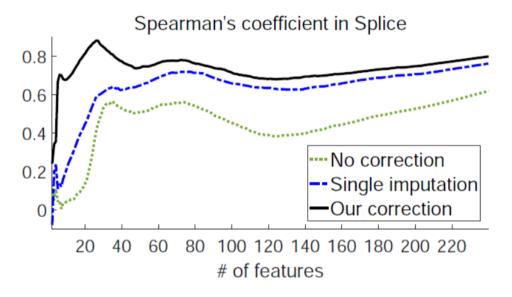
Uncertain Prior Knowledge



Sensitivity analysis



Feature Ranking in UR scenarios



Risk Factors for Low Birth Weight Infants

Risk factors: BMI, IMD, Age, Diabetes, Vitamins, Smoking, Passive Smoking, Alcohol

Smoking: $\widehat{I}(\widetilde{X}_S; Y) = 5.4 **$

BMI: $\widehat{I}(X_B; Y) = 2.8 **$

IMD: $\widehat{I}(X_I; Y) = 1.9$ **

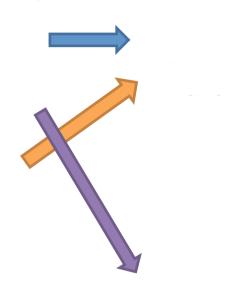
P. smoking: $\widehat{I}(\widetilde{X}_P; Y) = 1.5 **$

Age: $\widehat{I}(X_{Ag}; Y) = 0.7 *$

Alcohol: $\widehat{I}(\widetilde{X}_{Al}; Y) = 0.4$

G. diabetes: $\widehat{I}(X_D; Y) = 0.3$ **Vitamins:** $\widehat{I}(X_V; Y) = 0.1$

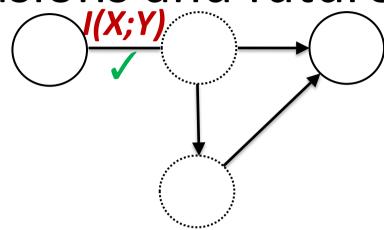
(a) Under-reported



UR are less powerful: Higher Probability of False Negative (Type II error) we derived a way to quantify this probability

Ranking that takes into account both Relevancy and Redundancy mRMR -minimum Redundancy Maximum Relevancy we derived a way to estimate redundancy between two UR factors

Conclusions and future work



1) Test independence in UR: control False positives/False negatives!

Quantify

effective sample size

2) Estimate redundancy terms: $I(X;Z) = I \downarrow \gamma \downarrow x \gamma \downarrow z (X;Z)$

Feature selection relevancy/redundancy

(X;Y) Y | (Z;Y) X X X X Z Z Z $M_X M_Z$

3) Conditional estimators for MB discovery

Thanks! Questions?