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specifies an interval bound
I = |p,p] for the expectation of an un-
known outcome X in {0,1}. ¥ is the
set of all closed intervals 7 in [0, 1].

This interval forecast I = [p,p| is a
commitment for Forecaster to adopt
p as and p as

for the gamble X.

The second player, , can now
In a second step take Forecaster up
on any (combination) of the following
commitments:

(i) for any p € [0,1] such that p < p,
and any a > 0, Forecaster must
accept the gamble o |X — p|;

(i) for any ¢ € [0, 1] such that ¢ > p,
and any B > 0, Forecaster must
accept the gamble g — X].

Finally, the third player, , deter-
mines the value x of X in {0, 1}.

Single forecast game

Sceptic’s uncertain rewards

This leads to an uncer-
tain reward (or capital in-
crease) for Sceptic:

AKX =—oalX—p]—PBlg—X]
characterised by
E;(AX) <0

where the upper expecta-
tion E; is defined by

E;(f) = maxE,(f)

Computable randomness
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Forecasting systems
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We collect all possible outcome sequences (x1,x2,...,%p,. ..

) in the set Q) ==

{O,I}N. We collect the finite outcome sequences (xi,...,x,) in the set QY :=
Unen,10.1}". Finite sequences s in (° and infinite sequences w in Q) are the
nodes—called situations—and paths in an event tree with unbounded horizon.

A forecasting system is a map y: QY — €, that associates with any situation s in

the event tree an interval forecast y(s)

= y(s),¥(s)] € €. A forecasting system y

is called precise if y=7. I' denotes the set 2’ of all forecasting systems.

Each interval forecast I; = y(s) corresponds to a local upper expectation E; , with

E
pey(s)

so the forecasting system vy turns the event tree into an imprecise probability tree.

y(s)(f) = max Ep(f) = max [pf(1)+(1—p)f(0)]

pEY(s)

10

Y(10) = I

A map M: QY — R is a supermartingale for y if E,(AM(s)) <0 for
all s € QY. In other words, it is a possible capital process for Sceptic.

We call an event A C Q) strictly null if there Is some non-negative
supermartingale T for y that converges to 4+« on A, meaning that
lim,_, 1T (") = 4 for all @ € A. The complement A€ of a strictly
null event A is never empty. A property that holds on A€ is said to hold
strictly almost surely, or for strictly almost all outcome sequences.

An outcome sequence o is computably random for vy if all computable
non-negative supermartingales 7T for y remain bounded above on o,
meaning that sup, .7 (@") < +-oe.

[c(w) :={yeT: wis computably random for y}

IS the set of all forecasting systems for which @ is computably random.

Proposition 1. All paths are computably random for the vacuous
forecasting system: y, € T'c(w) for all o € ), soT'c(w) is never empty.

More conservative (or imprecise) forecasting systems have more
computably random sequences.

Proposition 2. Let w be computably random for a forecasting system
y. Then w Is also computably random for any forecasting system y*
such that y C y*, meaning that y(s) C y*(s) for all s € Q°.

Theorem 3. Consider any forecasting system vy. Then strictly almost
all outcome sequences are computably random for y in the imprecise
probability tree that corresponds to .

Corollary 4. For any sequence of interval forecasts (Iy,...,I,,...)
there is a forecasting system given by y(xi,...,x,) = I,+1 for all
(x1,-..,x,) €4{0,1}" and all n € Ny, and associated imprecise prob-
ability tree such that strictly almost all—and therefore definitely at
least one—outcome sequences are computably random for vy in the
associated imprecise probability tree.

Constant forecasts

The stationary forecasting system ¥;
assigns the same interval forecast I to
all nodes:

vi(s) :=1foralls e QY

Consider all interval forecasts for
which the corresponding stationary
forecasting system makes @ com-
putably random:

(o) ={l€C: y€lc(w)}

Proposition 5 (Non-emptiness). For
all m € Q, [0,1] € 6c(w), so any se-
quence of outcomes w has at least
one stationary forecast that makes it
computably random: 6c(w) # 0.

Proposition 6 (Increasingness). Con-
sideranywec Q) andanyl,J €. If]I €
Gc(w) andI C J, then also J € 6c(w).

Proposition 7 (Closure). For any o €
() and any two interval forecasts I and
J: if I € 6c(w) and J € ¢c(w) then
INJ#0,andINJ € 6c().

Hence, ¢c(w) is a , and
[%c(0) = [p.(),Pc(0)]

IS a non-empty closed interval. Also

0,1]N[p.(@) —&1,Pc(0) +&] € (o)

forall e > 0and & > 0.

Computable randomness implies an intuitive limiting frequencies

result:

Theorem 8 (Church randomness). Consider any outcome se-
quence o = (xi,...,x,,...) In Q) and any stationary interval fore-
castI = [p,p] € 6c(w) that makes w computably random. Then
for any computable selection process S: QY — {0,1} such that

Y i oS(X1,. .., x) —> Foo!

ZZ;(l)S(xl, e X)Xk 1

p <liminf

— Nt ZZ;(l)S(xl, . ,Xk)

<limsup
n— 00

ZZ;(I)S(xl, e X)Xkt 1

01 y(01) = Iny
As a first example, fix any p < g In to 1/2:
\E\(I)It:]] and the forecasting system v, - %—F (—1)"5,, with

p ifnisodd
YP,q(x1,...,xn) = { . .
g Iifniseven

Proposition 9. Consider any o that
Is computably random for the precise
forecasting system v, ,. Then for all
1€%,1€%c(w) ifand only if |p,q] C 1.

Hence, p.(®) = p and pe(@) = g.

As a second example, consider the
sequence {p,}t.en in [0, 1] converging

>

N

00

<p
ZZ;(l)S(xl, e ,xk)

1

0, = e_m\/eﬁll —1forallneIN
and the forecasting system 7./, with
Vor/o(X1,. - sxn—1) == ppforalln € N

Proposition 10. Consider any w that
iIs computably random for the pre-
cise forecasting system y.,,. Then
for all1 € €, 1 € 6c(w) if and only if
min/ < 1/2 and max[I > 1/2.

Hence p (@) = Dc(@) = 1/2.




