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Introduction
Static Analysis of programs deduces properties of programs without
executing them and can be expressed using Abstract Interpretation.
A probabilistic analysis deduces program properties with respect to
an input probability measure. We use Evidence theory to lift non-
probabilistic analysis to probabilistic analysis of the same properties.

Abstract Interpretation
Two complete lattices (posets with well-defined least upper and great-
est lower bounds) (C,vC) and (A,vA) are connected by a Galois con-
nection (C,vC) −−→←−−α

γ
(A,vA) with an abstraction α : C → A and

concretization γ : A→ C if α(c) vA a⇔ c vC γ(a) whenever a ∈ A
and c ∈ C. The α uniquely determines γ and vice versa. A Galois
connection is a Galois insertion if furthermore α ◦ γ(a) = a holds.
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A transfer function f : ℘(C) → ℘(C) is monotone and for a power
domain (℘(C),⊆) it is distributive if written f : C → C. For a Ga-
lois connection (C,vC) −−→←−−α

γ
(A,vA), an abstract transfer function

g : A→ A is an upwards approximation of the concrete transfer func-
tion f : C → C, written f �] g, iff

f vC γ ◦ g ◦ α g wA α ◦ f ◦ γ

and a downwards iff g vA α ◦ f ◦γ and f wC γ ◦ g ◦α, written f �[ g.

Example 1 (Intervals). A classic example is abstracting sets of inte-
gers to intervals of integers using (℘(Z),⊆) −−→←−−α

γ
(I(Z),vI). where,

I(Z) , {[a, b] | a, b ∈ Z ∪ {−∞,∞} : a ≤ b} and vI is in-
terval inclusion. The abstraction is defined for all non-empty sets
α(a) , [min a,max a] where minZ , −∞ and maxZ , ∞, and
the concretization γ([a, b]) , {c ∈ Z | a ≤ c ≤ b}.
Note that since the domains are infinite, the theory, presented here,
does not cover the above example.

Example 2 (Sign). The abstract domain may not be measurable. Let
(℘({Z−, 0,Z+}),⊆) −−→←−−α

γ
({⊥,-,0,+,-0,-+,0+,?},v) with v and

α as depicted in the Hasse diagram.
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Definition 1 (output probability measure). Given a probability space
(X,X , µ), a measurable space (Y,Y), and a measurable function
f : X → Y then the output probability measure µf : Y → [0, 1] of

f is defined as

∀A ∈ Y : µf (A) = µ(f−1(A)).

A function f ′ is a probability-lifting of f iff f ′(µ)(A) =
µ(f−1(A)) : ∀A ∈ ℘(X)

Definition 2. Let (X,X , µ) be a probability space and S , (℘(C),⊆
) −−→←−−α

γ
(A,v) be a Galois connection with transfer functions f : C →

C and g : A → A, f �] g. Then a Galois connection (D,vD) −−−→←−−−
α′

γ′

(B,vB) with transfer functions f ′ and g′ is a probability-lifted Galois
of S iff f ′ is probability-lifting of f and f ′ �[ g′ or f ′ �] g′.

Background and Objective
In the pioneering paper “Abstract Interpretation of probabilistic seman-
tics” from 2001, Monniaux presented an abstract interpretation capable
of probabilistic analysis of both deterministic programs and probabilis-
tic programs. He lifted the concrete semantics to transform probability
measures and lifted the transfer function to continuous linear transfor-
mations between measure spaces (of norm less than 1, using the Ba-
nach norm of total variation). This part of his work relates to Kozen’s
“Semantics of Probabilistic Programs” from 1979. Monniaux’s ab-
stract domain is a set of sub-measures defined using a finite partition
of the concrete domain. He also uses the abstract transfer function to
define the probabilistic version, and following his lifting-method for
the concrete domain he lifts the abstract domain.

We present a more intuitive abstract domain that is directly related
to the original analysis using beliefs, plausibilities, basic probability
assignments and abstract versions thereof.
Example 3 (Output). A more complex probabilistic output analysis
was constructed by Monniaux based on interval analysis over reals;
here, we present a simpler version. He analyze a program that adds
four real variables produced by random generators, i.e., they are in-
dependent and uniformly distributed. Here, we show a reduced ver-
sion where the variables comes as input, and each input follows the
uniform distribution over {−2,−1, 0, 1, 2}. The abstract interpreta-
tion domains are as mentioned above, and the concretization sums the
sub-measures’ values for the interval of interest and obtain the over-
approximation (dark blue) of the concrete probability measure (light

blue).
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Bel, Pl and BPA
Definition 3. The pre-image preΓ and dual-pre-image p̃reΓ of the set-
function Γ are defined as:

preΓ(A) , {x ∈ X | Γ(x) ∩ A 6= ∅}
p̃reΓ(A) , {x ∈ X | Γ(x) ⊆ A}.

Definition 4. A set-function Γ : X → ℘(Y ) and a probability space
(X,℘(X), µ) induces a belief Bel and plausibility Pl on (Y, ℘(Y )) by

Bel(A) , µ(p̃reΓ(A))

Pl(A) , µ(preΓ(A))

Definition 5. An upper (resp. lower) pre-image pre]f (resp. pre[f ) of f
is a function satisfying

pre[f ⊆ p̃ref ⊆ pref ⊆ pre
]
f .

Definition 6. A Basic Probability Assignment (BPA) is a set func-
tion m : ℘(D) → [0, 1] iff (i) m(∅) = 0 (ii)

∑
A∈℘(D)m(A) = 1

(iii) {A ∈ ℘(D) |M(A) > 0} is finite.

Results
Theorem 1 (Evidence Theory). Given a probability space
(X,℘(X), µ) and Galois connection (℘(X), α, γ, S) with transfer
functions f : X→X and g : S→S where f �] g. Then µ]f , µ(pre

]
f )

is a belief function and µ[f (A) , µ(p̃re[f (A)) is a plausibility function
that satisfy

µ[f ≤ µf ≤ µ
]
f and µ

]
f (A) = 1− µ[f (A{).

Lemma 1. Let X be finite, Bel℘(X) be the set of all belief func-
tions over ℘(X) with function order ≤ and m℘(X)be the set of
all BPA over ℘(X) with order m vm m′ ,

∑
B⊆Am(B) ≤∑

B⊆Am
′(B) : ∀A ∈ ℘(X) then

(Bel℘(X),≤) −−−→←−−−αb
γb

(mX,vm)

is a Galois connection when

αb(Bel)(A) ,
∑
B⊆A(−1)|A−B|Bel(B)

γb(m)(A) ,
∑
B⊆Am(B)

Definition 7 (Abstract BPA). Given a lattice S with least element ⊥,
a function M : S → [0, 1] is an Abstract BPA (Abstract BPA) iff
(i) M(⊥) = 0, (ii)

∑
s∈SM(s) = 1, and (iii) {s ∈ S | M(s) > 0} is

finite.

Lemma 2. Let (℘(X),⊆) −−→←−−α
γ

(S,v) be a Galois insertion for which
it holds that γ(⊥) = ∅, and let (MS,vM ) be the set of all Ab-
stract BPAs with order vM : M vM M ′ ,

∑
BvAM(B) ≤∑

BvAM
′(B). Then

(mX,vm) −−−→←−−−
αm

γm
(MS,vM )

is a Galois connection when αm and γm are defined by

αm(m)(s) ,
∑
A∈α−1(s)m(A)

γm(M)(A) ,

{
M(α(A)) if A = γ(α(A))

0 otherwise

Theorem 2. Let (X,℘(X), µ) be a probability space and (℘(X),⊆
) −−→←−−α

γ
(S,v) be a Galois insertion with transfer functions f and

g such that f is distributive and f �] g. Let (Bel℘(X),≤) −−−→←−−−αb
γb

(mX,vm) and (mX,vm) −−−→←−−−
αm

γm
(MS,vM ) be Galois connections,

as above. Then fb =[ fm and fm �[ gm holds for transfer functions
fb(Bel)

′(A) , Bel(
⋃
f−1(A)), fm(m)(A) ,

∑
B∈f−1(A)m(B), and

gm(M) ,
∑
s′∈g−1(s)M(s′).

Theorem 3. Let G , (℘(X),⊆) −−→←−−α
γ

(S,v) be a Galois insertion
for which it holds that γ(⊥) = ∅, X is finite, and f : X → X and
g : S → S transfer functions so that f �] g then the Galois connection

(Bel℘(X),≤) −−−−−→←−−−−−
αm◦αb

γb◦γm
(MS,vM )

with transfer functions fb and gm (as in Theorem 2) is a probability-
lifted Galois of G with fb �[ gm.

Examples

Example 4. (Example 3 cont.) In our framework we lift The program:
add4(x1, x2, x3, x4) = x1 + x2 + x3 + x4.
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Example 5 (Sign). (Example 2 cont.) We analyse a simple integer
program: prg(x) = x*(-1) using a standard Detection of Sign
analysis. We can (a bit simplistic) represent the concrete transforma-
tion carried out by the program as f (x) = −x and the associated
abstract transformation as g(?) = ?, g(-+) = -+, g(0+) = ?, g(-) =
+, g(0) = 0, g(+) = -, g(⊥) = ⊥. Note especially the transfor-
mation of g(0+) = ? which will also push the belief masses of the
transformed Abstract BPA when compared to the transformed BPA.
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