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Introduction

Static Analysis of programs deduces properties of programs without
executing them and can be expressed using Abstract Interpretation.
A probabilistic analysis deduces program properties with respect to
an input probability measure. We use Evidence theory to lift non-
probabilistic analysis to probabilistic analysis of the same properties.

Abstract Interpretation

Two complete lattices (posets with well-defined least upper and great-
est lower bounds) (C', C¢) and (A, C 5 ) are connected by a Galois con-

nection (C,Cc) % (A, CA) with an abstraction o: C' — A and

concretizationy: A — C'if a(c) Ep a < ¢ C¢ y(a) whenever a € A
and ¢ € (. The o uniquely determines v and vice versa. A Galois
connection is a Galois insertion if furthermore « o y(a) = a holds.

Galois connection with

Galois Connection.: transfer functions f and g:
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A transfer function f: p(C) — ©(C') is monotone and for a power

domain (p(C'), C) it is distributive if written f: C' — C. For a Ga-

: : v ,
lois connection (C,CEc) &= (A, C4), an abstract transfer function

87
g: A — A1is an upwards approximation of the concrete transfer func-
tion f: C — C, written f = g, iff

fEcyogoa  gdiaofory

and a downwards iff g C, avo foryand f Jo yogoa, written f < g.

Example 1 (Intervals). A classic example is abstracting sets of inte-

~

gers to intervals of integers using (p(Z), C) < (Z(Z), ). where,

Z(Z) = {la,b] | a,b € Z U {—00,00}: a < b} and Ty is in-
terval inclusion. The abstraction is defined for all non-empty sets
ala) £ [mina, maxa] where minZ = —oo and maxZ = oo, and
the concretization y([a,b]) = {c € Z | a < ¢ < b}.

Note that since the domains are infinite, the theory, presented here,
does not cover the above example.

Example 2 (Sign). Ths abstract domain may not be measurable. Let
(9p({Z_,0,7.,}),C) %T {L,- 0,+ -0,—+, 0+, 2}, C) with C and
« as depicted in the Hasse diagram.
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Definition 1 (output probability measure). Given a probability space
(X, X, 1), a measurable space (Y,)), and a measurable function
f: X — Y then the output probability measure ps: Y — [0,1] of

f is defined as

VAEY: py(A) = ul(f~H(4).

A function f' is a probability-lifting of f iff fl(u)(A) =
p(FH(A)): VA € p(X)

Definition 2. Let (X, X, 1) be a probability space and S = (p(C), C

) %% (A, ) be a Galois connection with transfer functions . C' —
Cand g: A — A, [ =4 g. Then a Galois connection (D, Ep) &

CE/
(B, Cg) with transfer functions ' and ¢’ is a probability-lifted Galois
of S iff f' is probability-lifting of f and f' =<, ¢’ or [’ =4 q.

Background and Objective

In the pioneering paper “Abstract Interpretation of probabilistic seman-
tics” from 2001, Monniaux presented an abstract interpretation capable
of probabilistic analysis of both deterministic programs and probabilis-
tic programs. He lifted the concrete semantics to transform probability
measures and lifted the transfer function to continuous linear transfor-
mations between measure spaces (of norm less than 1, using the Ba-
nach norm of total variation). This part of his work relates to Kozen’s
“Semantics of Probabilistic Programs” from 1979. Monniaux’s ab-
stract domain 1s a set of sub-measures defined using a finite partition
of the concrete domain. He also uses the abstract transfer function to
define the probabilistic version, and following his lifting-method for
the concrete domain he lifts the abstract domain.

We present a more intuitive abstract domain that is directly related
to the original analysis using beliefs, plausibilities, basic probability
assignments and abstract versions thereof.

Example 3 (Output). A more complex probabilistic output analysis
was constructed by Monniaux based on interval analysis over reals;
here, we present a simpler version. He analyze a program that adds
four real variables produced by random generators, i.e., they are in-
dependent and uniformly distributed. Here, we show a reduced ver-
sion where the variables comes as input, and each input follows the
uniform distribution over {—2,—1,0,1,2}. The abstract interpreta-
tion domains are as mentioned above, and the concretization sums the
sub-measures’ values for the interval of interest and obtain the over-
approximation (dark blue) of the concrete probability measure (light
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Bel, Pl and BPA

Definition 3. The pre-image prer and dual-pre-image prer of the set-
function 1" are defined as:

prep(A) = {z € X | I(z)

NA#£D}
prer(A) = {z € X | T'(z) C A}.
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Definition 4. A set-function I' - X — (YY) and a probability space
(X, p(X), u) induces a belief Bel and plausibility Pl on (Y, p(Y)) by

Bel(A) £ p(prer(A))
PI(A) 2 p(prep(A))

Definition 5. An upper (resp. lower) pre-image preif (resp. pre?t ) of f
IS a function satisfying

b~ f
prey C prey C prey C prey.

Definition 6. A Basic Probability Assignment (BPA) is a set func-
tion m: p(D) — [0,1] iff (i) m(0) = 0 (ii) Y_pcypym(A) = 1
(iii) {A € (D) | M(A) > 0} is finite.

Results

Theorem 1 (Evidence Theory). Given a probability space
(X, p(X), ) and Galois connection (p(X),a,~,S) with transfer

functions . X — X and g: 5 — S5 where f =4 g. Then ,uif = ,u(pregf)

is a belief function and ,LL?B(A) 2 M(]%?(A)) is a plausibility function
that satisfy

pp<pp<py and  p(A) =1 upAD)

Lemma 1. Let X be finite, BelMX) be the set of all belief func-
tions over o(X) with function order < and mx\be the set of
all BPA over o(X) with order m Cp, m! = Y pcam(B) <
S pecam/(B) VA€ o(X) then -

o

(Belp(X)a <) <04:b (mx, Ep)

is a Galois connection when
ap(Bel)(A) £ 3 pe 4(—1)A=BIBel(B)
w(m)(A) =3 gcam(B)

Definition 7 (Abstract BPA). Given a lattice S with least element L,
a function M: S — [0,1] is an Abstract BPA (Abstract BPA) iff
(i) M(L) =0, (ii) Y .cqgM(s) =1, and (iii) {s € S | M(s) > 0} is
finite.

Lemma 2. Let (p(X), C % (S, E) be a Galois insertion for which

)
it holds that v(L) = 0, and let (Mg, ")) be the set of all Ab-
stract BPAs with order Cy: M Ty M = > pcAM(B) <

> A M'(B). Then -
Vi

(mXa Em) — (M87 EM)

Oy

is a Galois connection when oy, and vy, are defined by

am(m)(s) £ 3 geqo1(s m(A)
L (M)(A) & {M<a<A>> if A =(a(A)

0 otherwise

Theorem 2. Let (X, p(X), 1) be a probability space and (p(X), C

gl Co. : : :
) &= (5,C) be a Galois insertion with transfer functions f and

(07
g such that [ is distributive and [ =y g. Let (Belp<X>,§) &

ay
(my, Cyp) and (mx, ;) Z:m (Mg, =) be Galois connections,

as above. Then f, =, [nm and n}m =\, gm holds for transfer functions
fo(Bel) (A) £ Bel(lU fHA)), fin(m)(A) £ Y pe 114y m(B), and
gm<M> é ZS/Eg_l(S> M(S/).
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Theorem 3.Let G = (p(X), Q) % (S, E) be a Galois insertion
for which it holds that v(L) = 0, X is finite, and f: X — X and
g: S — S transfer functions so that [ =<y g then the Galois connection

b Vm

(0799187
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(Belp()q, S) <

with transfer functions fj, and g, (as in Theorem 2) is a probability-
lifted Galois of G with f, =), gm.

Examples

Example 4. (Example 3 cont.) In our framework we lift The program.:
add4(x1, X9, X3,X4) = X1 + X9 + X3 + X4.
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Example 5 (Sign). (Example 2 cont.) We analyse a simple integer
program: prqg(x) = x=*(—1) using a standard Detection of Sign
analysis. We can (a bit simplistic) represent the concrete transforma-

tion carried out by the program as f(x) = —x and the associated
abstract transformation as g(?) = ?,g(—+) = —+,9(0+) = ?,9(-) =
+.9(0) = 0,9(+) = —,g(L) = 1. Note especially the transfor-

mation of g(0+) = ? which will also push the belief masses of the
transformed Abstract BPA when compared to the transformed BPA.
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