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Due to a multiplicity of reasons, it is quite common to observe a number events of interest being af-
fected by degrees of uncertainty, e.g. incomplete data, experts’ opinions (epistemic peers: qualitative
constraints, soft evidence), unreliable and/or coarse observations, etc.
As it is not always a Good idea to ignore information [8], uncertain evidence should also be accounted
for by intelligent systems.

Background: Belief revision and Bayesian Networks
(Ω,A ) - measurable space, A boolean σ-algebra
P - probability distribution (pd) defined on (Ω,A ) s.t. P (α) > 0,∀α ∈ A
Belief revision as the process of changing a probability distribution based on new constraints posed
by epistemic peers, by means of an appropriate Revision Rule (RR).
Distance between the original (P ) and revised (R) probability distributions, measured by the CD-
distance [3]:
Let R and P be two pds sharing the same support∗, their CD-distance is

CD(P,R) = log
maxω∈Ω

R(ω)
P (ω)

minω∈Ω
R(ω)
P (ω)

≥ 0 (1)

Probability Kinematics (PK) [3-5, 13] generalize ordinary conditionalization [4]. Pd R comes from
P by PK if ∀x ∈ V al(X) and ∀α ∈ A ,

R(x|c) |= κ(X|c) (Responsiveness)

R(α|x, c) = P (α|x, c),∀α (Conservativeness or Rigidity Condition)

with κ(X|c) Conditional Bayes Factors (CBF) [3,5,13]:

κ(X|c) =
π(X|c)
π(x|c)

=
λ(X|c)
λ(x|c)

(2)

• x - fixed reference value of variable X in its possibility space V al(X)

• π(.) = R(.)/P (.) relevance quotients (soft evidence [1,3-5,13])

• λ(.) - likelihood ratios (virtual evidence [7])

Prop.1 (From [3]) Any RR based on Probability Kinematics minimizes the CD-distance

Bayesian Networks
A Bayesian Network (BN) [7] is a statistical model defined by the pair (G , P ), where G = (V,E) is
a Directed Acyclic Graph (DAG) with node and edge set, respectively, V and E. Each node Xi ∈ V
is associated to a random variable. P is a pd defined over V = {X1, ..., Xn}.
P is faithful to G [10] if the conditional independence relationships among pair of variables in P are
all and only those represented in the DAG. P faithful to G , it factorizes as

P (V ) = P (X1, ..., Xn) =

n∏
i=1

P (Xi|Pa(Xi)) (3)

Pa(X) being the parent set of variable X (set of direct predecessors of node X in the DAG). We
hereby consider the case of binary variables.
Evidence is propagated through the network via message-passing algorithms, such as the Junction
Tree (JT) algorithm [6-7]. JT algorithm reduces the model’s structure to a simplified graphical rep-
resentation (a tree) and efficiently performs conditionalization on observed evidence.

The Soft Propagation algorithm
The Soft Propagation (SP) algorithm generalizes the JT to the case of uncertain conditional observa-
tions, minimizing the CD-distance, based on optimality axioms of belief revision [1,5].

The Soft Propagation Algorithm
1. Build a JT under the constraint Xu ∪ C ⊆ CR, root-clique of the tree, as in [12].
P0 factorizes as [6]

P0(X1, ...Xn) = P0(CR)
∏
j

P0(Cj)

VT := {CR,C1, ...,CJ} - set of cliques of the JT (V ≡ VT );

2. Propagate hard evidence H = h toward the root-clique; P (CR) := P0(CR|h);

3. Let XQ ⊆ CR\{Xu, C}, apply the Commutative Revision Rule (CRR) based on PK:

R(XQ) := P (¬c′)P (XQ|¬c′) +
∑
i

P (c′i,¬c
′
−i)R

i(XQ|c′i,¬c
′
−i)+

+
∑
i,j

P (c′i, c
′
j,¬c

′
−i,j)R

ij(XQ|c′j, c
′
j,¬c

′
−i,j) + ... + P (c′)R1...K(XQ|c′) (4)

with R1...K(XQ|c′) :=

∑
xu
P (XQ,xu,c

′)
∏K

i=1 κ(xui|c′i)∑
xu
P (xu,c′)

∏K
i=1 κ(xui|c′i)

[5, 11, 13].

R(CR) follows from (4);

4. Back-propagate uncertain evidence; R(V ) := R(CR)P (V ′\CR|V ′ ∩ CR);

•Xu = {X1, ..., XK} ∪ V - set of random variables/nodes on which uncertain evidence is asserted

• {C = c′} = {C1 = c′1, ..., CK = c′K} - associated set (or subset) of conditioning events

•Def. Cross Context-Specific Independence (C-CSI): W.l.o.g., let P be a pd defined over vari-
ables Xi, Ci i = 1, 2, s.t. for fixed c′1, c

′
2, P (c′1, c

′
2) > 0. (x1, C1 = c′1) |= c(x2, C2 = c′2′),∀x1 ∈

V al(X1),∀x2 ∈ V al(X2)

Theorem 1
Iff C-CSI holds for every pair in Xu and fixed C = c′, then (i) the SP algorithm is an exact belief
revision procedure and (ii) it is invariant with respect to different revision schedules (commutativ-
ity). Let R(V ) be the resulting jpd, (iii) it is responsive to all uncertain instances provided and (iv)
it minimizes the CD-distance with P (V )
Proofs of i-iv are based on previous results in [1,3,5,11,13]

SP.1 The Oedipus Strategy for singly connected root cliques (†): from (C-CSI) to CR SCC-XL

Def. U-Polytree: A DAG G is a U-Polytree with respect to nodes A and B if the chain/fork path
connecting the two may be broken by the removal of a single (not necessarily unique) edge
Def. Singly Connected Clique (SCC-U): A clique C is a SCC with respect to U , U ⊆ C , whenever
the pd defined over its elements is faithful to a U-Polytree with respect to all pairs in U .

The Oedipus Strategy

0 (Initialize) XL := {(Xi, Xj) ⊆ Xu : C-CSI fails |Ci = c′i, Cj = c′j}, |XL| = L, 1 ≤ L ≤
K(K − 1)/2 and CR SCC-XL; then COe := CR;

1 For† every pair l, l = 1, ..., L do
2 Compute El, set of candidate edges of a SCC root clique to be broken, i.e. edges forming the path

that connects pair l, with properly instantiated nodes

3 Let X, Y be endpoints of edge (X, Y ),∀(X, Y ) ∈ El. ∀(x, y) ∈ V al(X) × V al(Y ), compute
Shogenji’s measure [9]: S(x, y) =

P (x,y)
P (x)P (y)

4 Break edge (X∗, Y ∗) := argminEl

∑
x,y |1 − S(x, y)| and replace it with the binary non-

probabilistic Oedipus node OX∗Y ∗, s.t. Oedipus node is a collider, [7]); update† COe accordingly

P (OX∗Y ∗ = oX∗Y ∗|x∗, y∗) := S(x∗, y∗)∑
oX∗Y ∗

P (oX∗Y ∗|x∗, y∗) := 1,∀(x∗, y∗)

5 End for
6 TOe’s clique set is VT\{CR} ∪ {COe} ≡ V ∪O, O = {OX∗Y ∗}X∗Y ∗ = {O1, ..., OL}; run the SP

algorithm on TOe; ROe(V ∪O) results

7R(V ) := ROe(V |O1, .., OL) is the revised jpd

N The Oedipus-SP algorithm is an approximate commutative revision procedure. Although ROe is
fully responsive to uncertain evidence, R is not in the general case

N Step 7 is motivated by the Extended Rigidity Condition: ROe(O|x, y) = POe(O|x, y), X, Y ∈ Xu

NR was found to empirically outperform alternative revision rules in terms of CD-distance with P

SP.2 The Coherent Pooling Strategy for multiple overlapping peers (†): from single to multi-
agent system

Based on previous results from [2,11,13-14], replace Step 3 of the SP algorithm with the following:

The Coherent Pooling Strategy

3a Generate imprecise assessments K(X|C = c′) as the convex hull of all uncertain assessments on
the associate event, X ∈ XPool ⊆ Xu

3b Apply (4) to all precise uncertain assessments, i.e. Y ∈ Xu\XPool; P → R

3c Apply (4) to all combinations of extreme points of setsK(.|.) generated in Step 3a; R→ R1, R2, ...

3d Take the lower/upper envelope of the pds generated in Step 3b: ∀X ∈ XPool
if† R(x|c) ∈ [R(x|c), R̄(x|c)]∀x, a form of dilation occurred [8] and R(X|c) is not revised by Step
3c; else R(X|c) := K(X|c)

Prop.3 CR generalizes to the imprecise setting [14], based on the External Bayesianity property of
the pooling operator we employed [11,13]. The associated jpd is coherent [2] while being consistent
(valid) with both precise and imprecise uncertain evidence constraints, according to an exact routine
[2,11].
N Step 3a refers to the case of overlapping epistemic peers whereas this procedure applies to the more
general case of imprecise uncertain evidence, accounting, e.g., for incomplete information.

Forthcoming Research
The CRR: Absorption of conditional uncertain evidence based on Adam’s conditioning [1,5] imposes
heavy restrictions on the probability values. Forthcoming research will be oriented in extending the
belief revision procedure on both epistemiological and probabilistic bases.
Context-specific independence: Avaiable (from previous research) routines for the detection of
context-specific independencies ought to be included; also, application of the procedure directly on
suited graphical structures may be reveal efficient
The Oedipus strategy: Due to the questionability of the Extended Rigidity Condition and given the
connections between Shogenij’s measure and the concept of dilation [8], future effort will be spent on
considering the epistemic and probabilistic implications of its usage. Also, much effort will be spent
on further generalizing the procedure to increasingly dense graphical structures
The Coherent Pooling strategy: As a Credal clique would yield massive computational costs and
render the strategy feasible only under restrictive sparsity conditions, last part of Step 3d is meant to
address the precise setting; as an alternative, the criterion followed may be replaced by some other
appropriate technique, such as that of choosing the pd in the credal set maximizing the Shannon En-
tropy. Additionally, imprecise extensions should be carefully handled based on their implications on
the original independence pattern of the BN under study
It’s a long way to the top (if you wanna rock ’n’ roll)
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∗P (A) = 0 iff R(A) = 0
†A number of alternative heuristics may be used: a simple sketch is hereby illustrated to provide an intuition




